IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v437y2005i7055d10.1038_nature03968.html
   My bibliography  Save this article

A general strategy for nanocrystal synthesis

Author

Listed:
  • Xun Wang

    (Tsinghua University
    National Center for Nanoscience and Nanotechnology)

  • Jing Zhuang

    (Tsinghua University
    National Center for Nanoscience and Nanotechnology)

  • Qing Peng

    (Tsinghua University
    National Center for Nanoscience and Nanotechnology)

  • Yadong Li

    (Tsinghua University
    National Center for Nanoscience and Nanotechnology)

Abstract

New strategies for materials fabrication are of fundamental importance in the advancement of science and technology1,2,3,4,5,6,7,8,9,10,11,12. Organometallic13,14 and other organic solution phase15,16,17 synthetic routes have enabled the synthesis of functional inorganic quantum dots or nanocrystals. These nanomaterials form the building blocks for new bottom-up approaches to materials assembly for a range of uses; such materials also receive attention because of their intrinsic size-dependent properties and resulting applications18,19,20,21. Here we report a unified approach to the synthesis of a large variety of nanocrystals with different chemistries and properties and with low dispersity; these include noble metal, magnetic/dielectric, semiconducting, rare-earth fluorescent, biomedical, organic optoelectronic semiconducting and conducting polymer nanoparticles. This strategy is based on a general phase transfer and separation mechanism occurring at the interfaces of the liquid, solid and solution phases present during the synthesis. We believe our methodology provides a simple and convenient route to a variety of building blocks for assembling materials with novel structure and function in nanotechnology13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29.

Suggested Citation

  • Xun Wang & Jing Zhuang & Qing Peng & Yadong Li, 2005. "A general strategy for nanocrystal synthesis," Nature, Nature, vol. 437(7055), pages 121-124, September.
  • Handle: RePEc:nat:nature:v:437:y:2005:i:7055:d:10.1038_nature03968
    DOI: 10.1038/nature03968
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03968
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Hui-Zhen & Ho, Yuh-Shan, 2013. "Independent research of China in Science Citation Index Expanded during 1980–2011," Journal of Informetrics, Elsevier, vol. 7(1), pages 210-222.
    2. Jiaxin Li & Kai Li & Zhao Li & Chunxue Wang & Yifei Liang & Yatong Pang & Jinzhu Ma & Fei Wang & Ping Ning & Hong He, 2024. "Capture of single Ag atoms through high-temperature-induced crystal plane reconstruction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:437:y:2005:i:7055:d:10.1038_nature03968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.