IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v436y2005i7054d10.1038_nature03891.html
   My bibliography  Save this article

The contribution of species richness and composition to bacterial services

Author

Listed:
  • Thomas Bell

    (University of Oxford
    NERC Centre for Ecology and Hydrology)

  • Jonathan A. Newman

    (University of Guelph)

  • Bernard W. Silverman

    (St. Peter's College)

  • Sarah L. Turner

    (NERC Centre for Ecology and Hydrology)

  • Andrew K. Lilley

    (NERC Centre for Ecology and Hydrology)

Abstract

On the beech Despite their importance, we are only beginning to understand how mixed communities of bacteria operate. There is a good reason for this: the microbial world is remarkably complex and dynamic so it is difficult to design experiments that ask the right questions. Laboratory microcosms are useful but involve small numbers of species in unreal situations. A natural ecosystem that can be manipulated experimentally is available, however. Rainpools that form in bark-lined depressions at the base of European beech trees are communities of up to 72 species, rather than the thousands found in, say, pond water. In this rainpool ecosystem the number of bacterial species (the biodiversity) strongly influences the rate at which the community provides a particular service (in this case, respiration). On this scale at least, species richness determines the level at which an ecosystem can function.

Suggested Citation

  • Thomas Bell & Jonathan A. Newman & Bernard W. Silverman & Sarah L. Turner & Andrew K. Lilley, 2005. "The contribution of species richness and composition to bacterial services," Nature, Nature, vol. 436(7054), pages 1157-1160, August.
  • Handle: RePEc:nat:nature:v:436:y:2005:i:7054:d:10.1038_nature03891
    DOI: 10.1038/nature03891
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03891
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    2. Khurana, Swamini & Abramoff, Rose & Bruni, Elisa & Dondini, Marta & Tupek, Boris & Guenet, Bertrand & Lehtonen, Aleksi & Manzoni, Stefano, 2023. "Interactive effects of microbial functional diversity and carbon availability on decomposition – A theoretical exploration," Ecological Modelling, Elsevier, vol. 486(C).
    3. Hannes Peter & Irene Ylla & Cristian Gudasz & Anna M RomanĂ­ & Sergi Sabater & Lars J Tranvik, 2011. "Multifunctionality and Diversity in Bacterial Biofilms," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-8, August.
    4. Yina Ma & Lei Zu & Fayu Long & Xiaofan Yang & Shixiong Wang & Qing Zhang & Yuejun He & Danmei Chen & Mingzhen Sui & Guangqi Zhang & Lipeng Zang & Qingfu Liu, 2022. "Promotion of Soil Microbial Community Restoration in the Mu Us Desert (China) by Aerial Seeding," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    5. Aisling J. Daly & Jan M. Baetens & Bernard De Baets, 2018. "Ecological Diversity: Measuring the Unmeasurable," Mathematics, MDPI, vol. 6(7), pages 1-28, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:436:y:2005:i:7054:d:10.1038_nature03891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.