IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v432y2004i7014d10.1038_nature02969.html
   My bibliography  Save this article

Strong coupling in a single quantum dot–semiconductor microcavity system

Author

Listed:
  • J. P. Reithmaier

    (Universität Würzburg, Am Hubland)

  • G. Sęk

    (Universität Würzburg, Am Hubland
    Wrocław University of Technology)

  • A. Löffler

    (Universität Würzburg, Am Hubland)

  • C. Hofmann

    (Universität Würzburg, Am Hubland)

  • S. Kuhn

    (Universität Würzburg, Am Hubland)

  • S. Reitzenstein

    (Universität Würzburg, Am Hubland)

  • L. V. Keldysh

    (Lebedev Physical Institute, Russian Academy of Science)

  • V. D. Kulakovskii

    (Russian Academy of Science)

  • T. L. Reinecke

    (Naval Research Laboratory)

  • A. Forchel

    (Universität Würzburg, Am Hubland)

Abstract

Cavity quantum electrodynamics, a central research field in optics and solid-state physics1,2,3, addresses properties of atom-like emitters in cavities and can be divided into a weak and a strong coupling regime. For weak coupling, the spontaneous emission can be enhanced or reduced compared with its vacuum level by tuning discrete cavity modes in and out of resonance with the emitter2,4,5,6,7,8,9,10,11,12,13. However, the most striking change of emission properties occurs when the conditions for strong coupling are fulfilled. In this case there is a change from the usual irreversible spontaneous emission to a reversible exchange of energy between the emitter and the cavity mode. This coherent coupling may provide a basis for future applications in quantum information processing or schemes for coherent control. Until now, strong coupling of individual two-level systems has been observed only for atoms in large cavities14,15,16,17. Here we report the observation of strong coupling of a single two-level solid-state system with a photon, as realized by a single quantum dot in a semiconductor microcavity. The strong coupling is manifest in photoluminescence data that display anti-crossings between the quantum dot exciton and cavity-mode dispersion relations, characterized by a vacuum Rabi splitting of about 140 µeV.

Suggested Citation

  • J. P. Reithmaier & G. Sęk & A. Löffler & C. Hofmann & S. Kuhn & S. Reitzenstein & L. V. Keldysh & V. D. Kulakovskii & T. L. Reinecke & A. Forchel, 2004. "Strong coupling in a single quantum dot–semiconductor microcavity system," Nature, Nature, vol. 432(7014), pages 197-200, November.
  • Handle: RePEc:nat:nature:v:432:y:2004:i:7014:d:10.1038_nature02969
    DOI: 10.1038/nature02969
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02969
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:432:y:2004:i:7014:d:10.1038_nature02969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.