IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7006d10.1038_nature02874.html
   My bibliography  Save this article

RNA silencing in plants

Author

Listed:
  • David Baulcombe

    (The Sainsbury Laboratory, John Innes Centre)

Abstract

There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.

Suggested Citation

  • David Baulcombe, 2004. "RNA silencing in plants," Nature, Nature, vol. 431(7006), pages 356-363, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7006:d:10.1038_nature02874
    DOI: 10.1038/nature02874
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02874
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daai Zhang & Chengcheng Zhong & Neil A. Smith & Robert de Feyter & Ian K. Greaves & Steve M. Swain & Ren Zhang & Ming-Bo Wang, 2022. "Nucleotide mismatches prevent intrinsic self-silencing of hpRNA transgenes to enhance RNAi stability in plants," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Si Liu & Meijuan Chen & Ruidong Li & Wan-Xiang Li & Amit Gal-On & Zhenyu Jia & Shou-Wei Ding, 2022. "Identification of positive and negative regulators of antiviral RNA interference in Arabidopsis thaliana," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Salman Naveed & Sachin Rustgi, 2023. "Functional Characterization of Candidate Genes, Gohir.D05G103700 and Gohir.D12G153600 , Identified through Expression QTL Analysis Using Virus-Induced Gene Silencing in Upland Cotton ( Gossypium hirsu," Agriculture, MDPI, vol. 13(5), pages 1-12, May.
    4. Adeeb Rahman & Neeti Sanan-Mishra, 2024. "When an Intruder Comes Home: GM and GE Strategies to Combat Virus Infection in Plants," Agriculture, MDPI, vol. 14(2), pages 1-26, February.
    5. Bangjun Zhou & Huihui Yu & Yong Xue & Mu Li & Chi Zhang & Bin Yu, 2024. "The spliceosome-associated protein CWC15 promotes miRNA biogenesis in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7006:d:10.1038_nature02874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.