IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v430y2004i6997d10.1038_nature02647.html
   My bibliography  Save this article

An SCF-like ubiquitin ligase complex that controls presynaptic differentiation

Author

Listed:
  • Edward H. Liao

    (Samuel Lunenfeld Research Institute, University of Toronto)

  • Wesley Hung

    (Samuel Lunenfeld Research Institute, University of Toronto)

  • Benjamin Abrams

    (University of California)

  • Mei Zhen

    (Samuel Lunenfeld Research Institute, University of Toronto)

Abstract

During synapse formation, specialized subcellular structures develop at synaptic junctions in a tightly regulated fashion. Cross-signalling initiated by ephrins, Wnts and transforming growth factor-β family members between presynaptic and postsynaptic termini are proposed to govern synapse formation1,2,3. It is not well understood how multiple signals are integrated and regulated by developing synaptic termini to control synaptic differentiation. Here we report the identification of FSN-1, a novel F-box protein that is required in presynaptic neurons for the restriction and/or maturation of synapses in Caenorhabditis elegans. Many F-box proteins are target recognition subunits of SCF (Skp, Cullin, F-box) ubiquitin-ligase complexes4,5,6,7. fsn-1 functions in the same pathway as rpm-1, a gene encoding a large protein with RING finger domains8,9. FSN-1 physically associates with RPM-1 and the C. elegans homologues of SKP1 and Cullin to form a new type of SCF complex at presynaptic periactive zones. We provide evidence that T10H9.2, which encodes the C. elegans receptor tyrosine kinase ALK (anaplastic lymphoma kinase10), may be a target or a downstream effector through which FSN-1 stabilizes synapse formation. This neuron-specific, SCF-like complex therefore provides a localized signal to attenuate presynaptic differentiation.

Suggested Citation

  • Edward H. Liao & Wesley Hung & Benjamin Abrams & Mei Zhen, 2004. "An SCF-like ubiquitin ligase complex that controls presynaptic differentiation," Nature, Nature, vol. 430(6997), pages 345-350, July.
  • Handle: RePEc:nat:nature:v:430:y:2004:i:6997:d:10.1038_nature02647
    DOI: 10.1038/nature02647
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02647
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahram Bahrami & Kaja Nordengen & Alexey A. Shadrin & Oleksandr Frei & Dennis Meer & Anders M. Dale & Lars T. Westlye & Ole A. Andreassen & Tobias Kaufmann, 2022. "Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:430:y:2004:i:6997:d:10.1038_nature02647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.