IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6982d10.1038_nature02440.html
   My bibliography  Save this article

AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus

Author

Listed:
  • Yasuhiko Minokoshi

    (Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School)

  • Thierry Alquier

    (Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School)

  • Noboru Furukawa

    (Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School)

  • Young-Bum Kim

    (Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School)

  • Anna Lee

    (Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School)

  • Bingzhong Xue

    (Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School)

  • James Mu

    (University of Pennsylvania Medical School)

  • Fabienne Foufelle

    (Unit 465 INSERM, Centre de Recherches Biomedicales des Cordeliers)

  • Pascal Ferré

    (Unit 465 INSERM, Centre de Recherches Biomedicales des Cordeliers)

  • Morris J. Birnbaum

    (University of Pennsylvania Medical School)

  • Bettina J. Stuck

    (Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School)

  • Barbara B. Kahn

    (Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School)

Abstract

Obesity is an epidemic in Western society, and causes rapidly accelerating rates of type 2 diabetes and cardiovascular disease. The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a ‘fuel gauge’ to monitor cellular energy status1. We investigated the potential role of AMPK in the hypothalamus in the regulation of food intake. Here we report that AMPK activity is inhibited in arcuate and paraventricular hypothalamus (PVH) by the anorexigenic hormone leptin, and in multiple hypothalamic regions by insulin, high glucose and refeeding. A melanocortin receptor agonist, a potent anorexigen2, decreases AMPK activity in PVH, whereas agouti-related protein, an orexigen2, increases AMPK activity. Melanocortin receptor signalling is required for leptin and refeeding effects on AMPK in PVH. Dominant negative AMPK expression in the hypothalamus is sufficient to reduce food intake and body weight, whereas constitutively active AMPK increases both. Alterations of hypothalamic AMPK activity augment changes in arcuate neuropeptide expression induced by fasting and feeding. Furthermore, inhibition of hypothalamic AMPK is necessary for leptin's effects on food intake and body weight, as constitutively active AMPK blocks these effects. Thus, hypothalamic AMPK plays a critical role in hormonal and nutrient-derived anorexigenic and orexigenic signals and in energy balance.

Suggested Citation

  • Yasuhiko Minokoshi & Thierry Alquier & Noboru Furukawa & Young-Bum Kim & Anna Lee & Bingzhong Xue & James Mu & Fabienne Foufelle & Pascal Ferré & Morris J. Birnbaum & Bettina J. Stuck & Barbara B. Kah, 2004. "AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus," Nature, Nature, vol. 428(6982), pages 569-574, April.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6982:d:10.1038_nature02440
    DOI: 10.1038/nature02440
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02440
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Qiu & Qinan Wu & Hao Wang & Dongfang Liu & Chen Chen & Zhiming Zhu & Hongting Zheng & Gangyi Yang & Ling Li & Mengliu Yang, 2024. "AZGP1 in POMC neurons modulates energy homeostasis and metabolism through leptin-mediated STAT3 phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Nathan L. Price & Pablo Fernández-Tussy & Luis Varela & Magdalena P. Cardelo & Marya Shanabrough & Binod Aryal & Rafael Cabo & Yajaira Suárez & Tamas L. Horvath & Carlos Fernández-Hernando, 2024. "microRNA-33 controls hunger signaling in hypothalamic AgRP neurons," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023. "eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    4. Mingming Xing & Yang Li & Yuqi Zhang & Juemou Zhou & Danting Ma & Mengqi Zhang & Minglei Tang & Ting Ouyang & Fumiao Zhang & Xiaofeng Shi & Jianyuan Sun & Zuxin Chen & Weiping J. Zhang & Shuli Zhang &, 2024. "Paraventricular hypothalamic RUVBL2 neurons suppress appetite by enhancing excitatory synaptic transmission in distinct neurocircuits," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6982:d:10.1038_nature02440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.