IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6981d10.1038_nature02433.html
   My bibliography  Save this article

Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons

Author

Listed:
  • Jinsong Li

    (The Rockefeller University)

  • Tomohiro Ishii

    (The Rockefeller University)

  • Paul Feinstein

    (The Rockefeller University)

  • Peter Mombaerts

    (The Rockefeller University)

Abstract

Of the ∼1,000 odorant receptor (OR) genes in the mouse genome, an olfactory sensory neuron (OSN) is thought to express one gene, from one allele. This is reminiscent of immunoglobulin and T-cell receptor genes, which undergo DNA rearrangements in lymphocytes. Here, we test the hypothesis that OR gene choice is controlled by DNA rearrangements in OSNs. Using permanent genetic marking, we show that the choice by an OSN to express an allele of the OR gene M71 is irreversible. Using M71-expressing OSNs as donors for nuclear transfer, we generate blastocysts, embryonic stem (ntES) cell lines and clonal mice. DNA analysis of these cell lines, whose genome is clonally derived from an M71-expressing OSN, does not reveal DNA rearrangements or sequence alterations at the M71 locus. OSNs that differentiate from ntES cells after injection into blastocysts are not restricted to expression of M71 but can express other OR genes. Thus, M71 gene choice is irreversible but is reset upon nuclear transfer, and is not accompanied by genomic alterations.

Suggested Citation

  • Jinsong Li & Tomohiro Ishii & Paul Feinstein & Peter Mombaerts, 2004. "Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons," Nature, Nature, vol. 428(6981), pages 393-399, March.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6981:d:10.1038_nature02433
    DOI: 10.1038/nature02433
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02433
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jane S. Huang & Tenzin Kunkhyen & Alexander N. Rangel & Taryn R. Brechbill & Jordan D. Gregory & Emily D. Winson-Bushby & Beichen Liu & Jonathan T. Avon & Ryan J. Muggleton & Claire E. J. Cheetham, 2022. "Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Kevin W. Zhu & Shawn D. Burton & Maira H. Nagai & Justin D. Silverman & Claire A. March & Matt Wachowiak & Hiroaki Matsunami, 2022. "Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6981:d:10.1038_nature02433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.