IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6979d10.1038_nature02346.html
   My bibliography  Save this article

Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation

Author

Listed:
  • Matthew W. Schmidt

    (University of California)

  • Howard J. Spero

    (University of California)

  • David W. Lea

    (University of California)

Abstract

Variations in the strength of the North Atlantic Ocean thermohaline circulation have been linked to rapid climate changes1 during the last glacial cycle through oscillations in North Atlantic Deep Water formation and northward oceanic heat flux2,3,4. The strength of the thermohaline circulation depends on the supply of warm, salty water to the North Atlantic, which, after losing heat to the atmosphere, produces the dense water masses that sink to great depths and circulate back south2. Here we analyse two Caribbean Sea sediment cores, combining Mg/Ca palaeothermometry with measurements of oxygen isotopes in foraminiferal calcite in order to reconstruct tropical Atlantic surface salinity5,6 during the last glacial cycle. We find that Caribbean salinity oscillated between saltier conditions during the cold oxygen isotope stages 2, 4 and 6, and lower salinities during the warm stages 3 and 5, covarying with the strength of North Atlantic Deep Water formation7. At the initiation of the Bølling/Allerød warm interval, Caribbean surface salinity decreased abruptly, suggesting that the advection of salty tropical waters into the North Atlantic amplified thermohaline circulation and contributed to high-latitude warming.

Suggested Citation

  • Matthew W. Schmidt & Howard J. Spero & David W. Lea, 2004. "Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation," Nature, Nature, vol. 428(6979), pages 160-163, March.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6979:d:10.1038_nature02346
    DOI: 10.1038/nature02346
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02346
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin T. Wright & Kathleen R. Johnson & Gabriela Serrato Marks & David McGee & Tripti Bhattacharya & Gregory R. Goldsmith & Clay R. Tabor & Jean-Louis Lacaille-Muzquiz & Gianna Lum & Laura Beramendi-O, 2023. "Dynamic and thermodynamic influences on precipitation in Northeast Mexico on orbital to millennial timescales," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Heather M. Stoll & Isabel Cacho & Edward Gasson & Jakub Sliwinski & Oliver Kost & Ana Moreno & Miguel Iglesias & Judit Torner & Carlos Perez-Mejias & Negar Haghipour & Hai Cheng & R. Lawrence Edwards, 2022. "Rapid northern hemisphere ice sheet melting during the penultimate deglaciation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Alexander Correa-Metrio & Mark Bush & Socorro Lozano-García & Susana Sosa-Nájera, 2013. "Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6979:d:10.1038_nature02346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.