IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6979d10.1038_nature02330.html
   My bibliography  Save this article

Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase

Author

Listed:
  • Tarig Bashir

    (New York University School of Medicine
    New York University Cancer Institute)

  • N. Valerio Dorrello

    (New York University School of Medicine
    New York University Cancer Institute)

  • Virginia Amador

    (New York University School of Medicine
    New York University Cancer Institute)

  • Daniele Guardavaccaro

    (New York University School of Medicine
    New York University Cancer Institute)

  • Michele Pagano

    (New York University School of Medicine
    New York University Cancer Institute)

Abstract

Skp2 and its cofactor Cks1 are the substrate-targeting subunits of the SCFSkp2–Cks1 (Skp1/Cul1/F-box protein) ubiquitin ligase complex that regulates entry into S phase by inducing the degradation of the cyclin-dependent kinase inhibitors p21 and p27 (ref. 1). Skp2 is an oncoprotein that often shows increased expression in human cancers2; however, the mechanism that regulates its cellular abundance is not well understood. Here we show that both Skp2 and Cks1 proteins are unstable in G1 and that their degradation is mediated by the ubiquitin ligase APC/CCdh1 (anaphase-promoting complex/cyclosome and its activator Cdh1). Silencing of Cdh1 by RNA interference in G1 cells stabilizes Skp2 and Cks1, with a consequent increase in p21 and p27 proteolysis. Depletion of Cdh1 also increases the percentage of cells in S phase, whereas concomitant downregulation of Skp2 reverses this effect, showing that Skp2 is an essential target of APC/CCdh1. Expression of a stable Skp2 mutant that cannot bind APC/CCdh1 induces premature entry into S phase. Thus, the induction of Skp2 and Cks1 degradation in G1 represents a principal mechanism by which APC/CCdh1 prevents the unscheduled degradation of SCFSkp2–Cks1 substrates and maintains the G1 state.

Suggested Citation

  • Tarig Bashir & N. Valerio Dorrello & Virginia Amador & Daniele Guardavaccaro & Michele Pagano, 2004. "Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase," Nature, Nature, vol. 428(6979), pages 190-193, March.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6979:d:10.1038_nature02330
    DOI: 10.1038/nature02330
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02330
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02330?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Min Lee & Henrik M. Hammarén & Mikhail M. Savitski & Sung Hee Baek, 2023. "Control of protein stability by post-translational modifications," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Xiaohua Xu & Chou-Wei Chang & Min Li & Kenneth Omabe & Nhung Le & Yi-Hsuan Chen & Feng Liang & Yilun Liu, 2023. "DNA replication initiation factor RECQ4 possesses a role in antagonizing DNA replication initiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Sang Bae Lee & Luciano Garofano & Aram Ko & Fulvio D’Angelo & Brulinda Frangaj & Danika Sommer & Qiwen Gan & KyeongJin Kim & Timothy Cardozo & Antonio Iavarone & Anna Lasorella, 2022. "Regulated interaction of ID2 with the anaphase-promoting complex links progression through mitosis with reactivation of cell-type-specific transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Samuel Hume & Claudia P. Grou & Pauline Lascaux & Vincenzo D’Angiolella & Arnaud J. Legrand & Kristijan Ramadan & Grigory L. Dianov, 2021. "The NUCKS1-SKP2-p21/p27 axis controls S phase entry," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6979:d:10.1038_nature02330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.