IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v426y2003i6965d10.1038_nature02138.html
   My bibliography  Save this article

Explosive volcanism may not be an inevitable consequence of magma fragmentation

Author

Listed:
  • Helge M. Gonnermann

    (University of California)

  • Michael Manga

    (University of California)

Abstract

The fragmentation of magma, containing abundant gas bubbles, is thought to be the defining characteristic of explosive eruptions1,2,3. When viscous stresses associated with the growth of bubbles and the flow of the ascending magma exceed the strength of the melt2,4,5,6, the magma breaks into disconnected fragments suspended within an expanding gas phase. Although repeated effusive and explosive eruptions for individual volcanoes are common7,8, the dynamics governing the transition between explosive and effusive eruptions remain unclear. Magmas for both types of eruptions originate from sources with similar volatile content, yet effusive lavas erupt considerably more degassed than their explosive counterparts7,8. One mechanism for degassing during magma ascent, consistent with observations, is the generation of intermittent permeable fracture networks generated by non-explosive fragmentation near the conduit walls9,10,11. Here we show that such fragmentation can occur by viscous shear in both effusive and explosive eruptions. Moreover, we suggest that such fragmentation may be important for magma degassing and the inhibition of explosive behaviour. This implies that, contrary to conventional views, explosive volcanism is not an inevitable consequence of magma fragmentation.

Suggested Citation

  • Helge M. Gonnermann & Michael Manga, 2003. "Explosive volcanism may not be an inevitable consequence of magma fragmentation," Nature, Nature, vol. 426(6965), pages 432-435, November.
  • Handle: RePEc:nat:nature:v:426:y:2003:i:6965:d:10.1038_nature02138
    DOI: 10.1038/nature02138
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02138
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annabelle Foster & Fabian B. Wadsworth & Hugh Tuffen & Holly E. Unwin & Madeleine C. S. Humphreys, 2024. "Evidence for the formation of silicic lava by pyroclast sintering," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Francisco Cáceres & Kai-Uwe Hess & Michael Eitel & Markus Döblinger & Kelly N. McCartney & Mathieu Colombier & Stuart A. Gilder & Bettina Scheu & Melanie Kaliwoda & Donald B. Dingwell, 2024. "Oxide nanolitisation-induced melt iron extraction causes viscosity jumps and enhanced explosivity in silicic magma," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:426:y:2003:i:6965:d:10.1038_nature02138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.