IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v426y2003i6964d10.1038_nature02131.html
   My bibliography  Save this article

The long-term carbon cycle, fossil fuels and atmospheric composition

Author

Listed:
  • Robert A. Berner

    (Yale University)

Abstract

The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

Suggested Citation

  • Robert A. Berner, 2003. "The long-term carbon cycle, fossil fuels and atmospheric composition," Nature, Nature, vol. 426(6964), pages 323-326, November.
  • Handle: RePEc:nat:nature:v:426:y:2003:i:6964:d:10.1038_nature02131
    DOI: 10.1038/nature02131
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02131
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilaria Perissi & Alessandro Lavacchi & Ugo Bardi, 2021. "The Role of Energy Return on Energy Invested (EROEI) in Complex Adaptive Systems," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Virendra Bahadur Singh & A. K. Keshari & AL. Ramanathan, 2020. "Major ion chemistry and atmospheric CO2 consumption deduced from the Batal glacier, Lahaul–Spiti valley, Western Himalaya, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6585-6603, October.
    3. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    4. Caleb Wright & Roger Sathre & Shashi Buluswar, 2020. "The global challenge of clean cooking systems," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1219-1240, December.
    5. Stephen G. Wiedemann & Quan V. Nguyen & Simon J. Clarke, 2022. "Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    6. Guo, Fuxing & Wang, Yanping & Zhu, Haoyong & Zhang, Chuangye & Sun, Haowei & Fang, Zhuling & Yang, Jing & Zhang, Linsen & Mu, Yan & Man, Yu Bon & Wu, Fuyong, 2023. "Crop productivity and soil inorganic carbon change mediated by enhanced rock weathering in farmland: A comparative field analysis of multi-agroclimatic regions in central China," Agricultural Systems, Elsevier, vol. 210(C).
    7. Aki Koskela & Hannu Suopajärvi & Olli Mattila & Juha Uusitalo & Timo Fabritius, 2019. "Lignin from Bioethanol Production as a Part of a Raw Material Blend of a Metallurgical Coke," Energies, MDPI, vol. 12(8), pages 1-19, April.
    8. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    9. Tjerk Zitscher & Martin Kaltschmitt, 2024. "Sustainable Carbon Utilization for a Climate-Neutral Economy–Framework Necessities and Assessment Criteria," Energies, MDPI, vol. 17(16), pages 1-24, August.
    10. Y.-H. Percival Zhang & Jonathan R. Mielenz, 2011. "Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy," Energies, MDPI, vol. 4(2), pages 1-22, January.
    11. Lewis E. Gilbert, 2004. "Strategies for Developing Carbon Sequestration Portfolios," Energy & Environment, , vol. 15(5), pages 825-835, September.
    12. Alexandru Milcu & Martin Lukac & Phil Ineson, 2012. "The role of closed ecological systems in carbon cycle modelling," Climatic Change, Springer, vol. 112(3), pages 709-716, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:426:y:2003:i:6964:d:10.1038_nature02131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.