IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6946d10.1038_nature01810.html
   My bibliography  Save this article

Structural transitions and elasticity from torque measurements on DNA

Author

Listed:
  • Zev Bryant

    (University of California)

  • Michael D. Stone

    (University of California)

  • Jeff Gore

    (University of California)

  • Steven B. Smith

    (University of California
    University of California)

  • Nicholas R. Cozzarelli

    (University of California)

  • Carlos Bustamante

    (University of California
    University of California
    University of California
    University of California)

Abstract

Knowledge of the elastic properties of DNA is required to understand the structural dynamics of cellular processes such as replication and transcription. Measurements of force and extension on single molecules of DNA1,2,3 have allowed direct determination of the molecule's mechanical properties, provided rigorous tests of theories of polymer elasticity4, revealed unforeseen structural transitions induced by mechanical stresses3,5,6,7, and established an experimental and conceptual framework for mechanical assays of enzymes that act on DNA8. However, a complete description of DNA mechanics must also consider the effects of torque, a quantity that has hitherto not been directly measured in micromanipulation experiments. We have measured torque as a function of twist for stretched DNA—torsional strain in over- or underwound molecules was used to power the rotation of submicrometre beads serving as calibrated loads. Here we report tests of the linearity of DNA's twist elasticity, direct measurements of the torsional modulus (finding a value ∼40% higher than generally accepted), characterization of torque-induced structural transitions, and the establishment of a framework for future assays of torque and twist generation by DNA-dependent enzymes. We also show that cooperative structural transitions in DNA can be exploited to construct constant-torque wind-up motors and force–torque converters.

Suggested Citation

  • Zev Bryant & Michael D. Stone & Jeff Gore & Steven B. Smith & Nicholas R. Cozzarelli & Carlos Bustamante, 2003. "Structural transitions and elasticity from torque measurements on DNA," Nature, Nature, vol. 424(6946), pages 338-341, July.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6946:d:10.1038_nature01810
    DOI: 10.1038/nature01810
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01810
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korbinian Liebl & Martin Zacharias, 2020. "How global DNA unwinding causes non-uniform stress distribution and melting of DNA," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-21, May.
    2. Fang-Chieh Chou & Jan Lipfert & Rhiju Das, 2014. "Blind Predictions of DNA and RNA Tweezers Experiments with Force and Torque," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    3. Camille Brème & François Heslot, 2013. "Mapping of Single-Base Differences between Two DNA Strands in a Single Molecule Using Holliday Junction Nanomechanics," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    4. Jack W. Shepherd & Sebastien Guilbaud & Zhaokun Zhou & Jamieson A. L. Howard & Matthew Burman & Charley Schaefer & Adam Kerrigan & Clare Steele-King & Agnes Noy & Mark C. Leake, 2024. "Correlating fluorescence microscopy, optical and magnetic tweezers to study single chiral biopolymers such as DNA," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Pascal Carrivain & Maria Barbi & Jean-Marc Victor, 2014. "In Silico Single-Molecule Manipulation of DNA with Rigid Body Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-13, February.
    6. Oi Kwan Wong & Martin Guthold & Dorothy A Erie & Jeff Gelles, 2008. "Interconvertible Lac Repressor–DNA Loops Revealed by Single-Molecule Experiments," PLOS Biology, Public Library of Science, vol. 6(9), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6946:d:10.1038_nature01810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.