IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v422y2003i6929d10.1038_nature01470.html
   My bibliography  Save this article

Antibody neutralization and escape by HIV-1

Author

Listed:
  • Xiping Wei

    (University of Alabama at Birmingham)

  • Julie M. Decker

    (University of Alabama at Birmingham)

  • Shuyi Wang

    (University of Alabama at Birmingham)

  • Huxiong Hui

    (University of Alabama at Birmingham)

  • John C. Kappes

    (University of Alabama at Birmingham
    University of Alabama at Birmingham)

  • Xiaoyun Wu

    (University of Alabama at Birmingham)

  • Jesus F. Salazar-Gonzalez

    (University of Alabama at Birmingham)

  • Maria G. Salazar

    (University of Alabama at Birmingham)

  • J. Michael Kilby

    (University of Alabama at Birmingham)

  • Michael S. Saag

    (University of Alabama at Birmingham)

  • Natalia L. Komarova

    (Institute for Advanced Study)

  • Martin A. Nowak

    (Institute for Advanced Study)

  • Beatrice H. Hahn

    (University of Alabama at Birmingham
    University of Alabama at Birmingham)

  • Peter D. Kwong

    (Vaccine Research Center, National Institutes of Health)

  • George M. Shaw

    (University of Alabama at Birmingham
    University of Alabama at Birmingham
    University of Alabama at Birmingham)

Abstract

Neutralizing antibodies (Nab) are a principal component of an effective human immune response to many pathogens, yet their role in HIV-1 infection is unclear1,2,3,4,5,6. To gain a better understanding of this role, we examined plasma from patients with acute HIV infection. Here we report the detection of autologous Nab as early as 52 days after detection of HIV-specific antibodies. The viral inhibitory activity of Nab resulted in complete replacement of neutralization-sensitive virus by successive populations of resistant virus. Escape virus contained mutations in the env gene that were unexpectedly sparse, did not map generally to known neutralization epitopes, and involved primarily changes in N-linked glycosylation. This pattern of escape, and the exceptional density of HIV-1 envelope glycosylation generally7,8, led us to postulate an evolving ‘glycan shield’ mechanism of neutralization escape whereby selected changes in glycan packing prevent Nab binding but not receptor binding. Direct support for this model was obtained by mutational substitution showing that Nab-selected alterations in glycosylation conferred escape from both autologous antibody and epitope-specific monoclonal antibodies. The evolving glycan shield thus represents a new mechanism contributing to HIV-1 persistence in the face of an evolving antibody repertoire.

Suggested Citation

  • Xiping Wei & Julie M. Decker & Shuyi Wang & Huxiong Hui & John C. Kappes & Xiaoyun Wu & Jesus F. Salazar-Gonzalez & Maria G. Salazar & J. Michael Kilby & Michael S. Saag & Natalia L. Komarova & Martin, 2003. "Antibody neutralization and escape by HIV-1," Nature, Nature, vol. 422(6929), pages 307-312, March.
  • Handle: RePEc:nat:nature:v:422:y:2003:i:6929:d:10.1038_nature01470
    DOI: 10.1038/nature01470
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01470
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeffrey E. Harris, 2021. "The Repeated Setbacks of HIV Vaccine Development Laid the Groundwork for SARS-CoV-2 Vaccines," NBER Working Papers 28587, National Bureau of Economic Research, Inc.
    2. Wayne Delport & Konrad Scheffler & Cathal Seoighe, 2008. "Frequent Toggling between Alternative Amino Acids Is Driven by Selection in HIV-1," PLOS Pathogens, Public Library of Science, vol. 4(12), pages 1-13, December.
    3. Kun-Wei Chan & Christina C. Luo & Hong Lu & Xueling Wu & Xiang-Peng Kong, 2021. "A site of vulnerability at V3 crown defined by HIV-1 bNAb M4008_N1," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Shixia Wang & Kun-Wei Chan & Danlan Wei & Xiuwen Ma & Shuying Liu & Guangnan Hu & Saeyoung Park & Ruimin Pan & Ying Gu & Alexandra F. Nazzari & Adam S. Olia & Kai Xu & Bob C. Lin & Mark K. Louder & Kr, 2024. "Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. David A. Spencer & Benjamin S. Goldberg & Shilpi Pandey & Tracy Ordonez & Jérémy Dufloo & Philip Barnette & William F. Sutton & Heidi Henderson & Rebecca Agnor & Lina Gao & Timothée Bruel & Olivier Sc, 2022. "Phagocytosis by an HIV antibody is associated with reduced viremia irrespective of enhanced complement lysis," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Shuang Yang & Giorgos Hiotis & Yi Wang & Junjian Chen & Jia-huai Wang & Mikyung Kim & Ellis L. Reinherz & Thomas Walz, 2022. "Dynamic HIV-1 spike motion creates vulnerability for its membrane-bound tripod to antibody attack," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Yi-Nan Zhang & Jennifer Paynter & Aleksandar Antanasijevic & Joel D. Allen & Mor Eldad & Yi-Zong Lee & Jeffrey Copps & Maddy L. Newby & Linling He & Deborah Chavez & Pat Frost & Anna Goodroe & John Du, 2023. "Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimers as HIV-1 vaccine candidates," Nature Communications, Nature, vol. 14(1), pages 1-29, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6929:d:10.1038_nature01470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.