IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v422y2003i6928d10.1038_nature01433.html
   My bibliography  Save this article

Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1

Author

Listed:
  • Emmanuel Treiner

    (Laboratoire d'Immunologie and INSERM U520, Institut Curie)

  • Livine Duban

    (Laboratoire d'Immunologie and INSERM U520, Institut Curie)

  • Seiamak Bahram

    (INSERM–CReS, Centre de Recherche d'Immunologie et d'Hématologie)

  • Mirjana Radosavljevic

    (INSERM–CReS, Centre de Recherche d'Immunologie et d'Hématologie)

  • Valerie Wanner

    (INSERM–CReS, Centre de Recherche d'Immunologie et d'Hématologie)

  • Florence Tilloy

    (Laboratoire d'Immunologie and INSERM U520, Institut Curie)

  • Pierre Affaticati

    (Laboratoire d'Immunologie and INSERM U520, Institut Curie)

  • Susan Gilfillan

    (Washington University School of Medicine)

  • Olivier Lantz

    (Laboratoire d'Immunologie and INSERM U520, Institut Curie)

Abstract

The evolutionary conservation of T lymphocyte subsets bearing T-cell receptors (TCRs) using invariant α-chains is indicative of unique functions. CD1d-restricted natural killer T (NK-T) cells that express an invariant Vα14 TCRα chain have been implicated in microbial and tumour responses, as well as in auto-immunity1,2. Here we show that T cells that express the canonical hVα7.2-Jα33 or mVα19-Jα33 TCR rearrangement3 are preferentially located in the gut lamina propria of humans and mice, respectively, and are therefore genuine mucosal-associated invariant T (MAIT) cells. Selection and/or expansion of this population requires B lymphocytes, as MAIT cells are absent in B-cell-deficient patients and mice. In addition, we show that MAIT cells are selected and/or restricted by MR1, a monomorphic major histocompatibility complex class I-related molecule that is markedly conserved in diverse mammalian species4. MAIT cells are not present in germ-free mice, indicating that commensal flora is required for their expansion in the gut lamina propria. This indicates that MAIT cells are probably involved in the host response at the site of pathogen entry, and may regulate intestinal B-cell activity.

Suggested Citation

  • Emmanuel Treiner & Livine Duban & Seiamak Bahram & Mirjana Radosavljevic & Valerie Wanner & Florence Tilloy & Pierre Affaticati & Susan Gilfillan & Olivier Lantz, 2003. "Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1," Nature, Nature, vol. 422(6928), pages 164-169, March.
  • Handle: RePEc:nat:nature:v:422:y:2003:i:6928:d:10.1038_nature01433
    DOI: 10.1038/nature01433
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01433
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Z Harms & Kristina M Lorenzo & Kevin P Corley & Monina S Cabrera & Nora E Sarvetnick, 2015. "Altered CD161bright CD8+ Mucosal Associated Invariant T (MAIT)-Like Cell Dynamics and Increased Differentiation States among Juvenile Type 1 Diabetics," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-21, January.
    2. Ann-Christin Gnirck & Marie-Sophie Philipp & Alex Waterhölter & Malte Wunderlich & Nikhat Shaikh & Virginia Adamiak & Lena Henneken & Tobias Kautz & Tingting Xiong & Daniela Klaus & Pascal Tomczyk & M, 2023. "Mucosal-associated invariant T cells contribute to suppression of inflammatory myeloid cells in immune-mediated kidney disease," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Lauren Stern & Helen M. McGuire & Selmir Avdic & Barbara Fazekas de St Groth & David Gottlieb & Allison Abendroth & Emily Blyth & Barry Slobedman, 2022. "Immunoprofiling reveals cell subsets associated with the trajectory of cytomegalovirus reactivation post stem cell transplantation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Kensuke Shibata & Chihiro Motozono & Masamichi Nagae & Takashi Shimizu & Eri Ishikawa & Daisuke Motooka & Daisuke Okuzaki & Yoshihiro Izumi & Masatomo Takahashi & Nao Fujimori & James B. Wing & Takahi, 2022. "Symbiotic bacteria-dependent expansion of MR1-reactive T cells causes autoimmunity in the absence of Bcl11b," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Morgane Mabire & Pushpa Hegde & Adel Hammoutene & Jinghong Wan & Charles Caër & Rola Al Sayegh & Mathilde Cadoux & Manon Allaire & Emmanuel Weiss & Tristan Thibault-Sogorb & Olivier Lantz & Michèle Go, 2023. "MAIT cell inhibition promotes liver fibrosis regression via macrophage phenotype reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:422:y:2003:i:6928:d:10.1038_nature01433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.