IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v421y2003i6921d10.1038_nature01405.html
   My bibliography  Save this article

Ten years of tension: single-molecule DNA mechanics

Author

Listed:
  • Carlos Bustamante

    (University of California
    University of California)

  • Zev Bryant

    (University of California)

  • Steven B. Smith

    (University of California)

Abstract

The basic features of DNA were elucidated during the half-century following the discovery of the double helix. But it is only during the past decade that researchers have been able to manipulate single molecules of DNA to make direct measurements of its mechanical properties. These studies have illuminated the nature of interactions between DNA and proteins, the constraints within which the cellular machinery operates, and the forces created by DNA-dependent motors.

Suggested Citation

  • Carlos Bustamante & Zev Bryant & Steven B. Smith, 2003. "Ten years of tension: single-molecule DNA mechanics," Nature, Nature, vol. 421(6921), pages 423-427, January.
  • Handle: RePEc:nat:nature:v:421:y:2003:i:6921:d:10.1038_nature01405
    DOI: 10.1038/nature01405
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01405
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korbinian Liebl & Martin Zacharias, 2020. "How global DNA unwinding causes non-uniform stress distribution and melting of DNA," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-21, May.
    2. Li Liu & Ying Fang & Qingsheng Huang & Jianhua Wu, 2011. "A Rigidity-Enhanced Antimicrobial Activity: A Case for Linear Cationic α-Helical Peptide HP(2–20) and Its Four Analogues," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    3. Young-Joo Kim & Do-Nyun Kim, 2016. "Structural Basis for Elastic Mechanical Properties of the DNA Double Helix," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
    4. Fang-Chieh Chou & Jan Lipfert & Rhiju Das, 2014. "Blind Predictions of DNA and RNA Tweezers Experiments with Force and Torque," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    5. Sangram Kadam & Kiran Kumari & Vinoth Manivannan & Shuvadip Dutta & Mithun K. Mitra & Ranjith Padinhateeri, 2023. "Predicting scale-dependent chromatin polymer properties from systematic coarse-graining," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:421:y:2003:i:6921:d:10.1038_nature01405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.