IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v420y2002i6913d10.1038_nature01137.html
   My bibliography  Save this article

A central role for JNK in obesity and insulin resistance

Author

Listed:
  • Jiro Hirosumi

    (Harvard School of Public Health)

  • Gürol Tuncman

    (Harvard School of Public Health)

  • Lufen Chang

    (University of California , School of Medicine)

  • Cem Z. Görgün

    (Harvard School of Public Health)

  • K. Teoman Uysal

    (Harvard School of Public Health)

  • Kazuhisa Maeda

    (Harvard School of Public Health)

  • Michael Karin

    (University of California , School of Medicine)

  • Gökhan S. Hotamisligil

    (Harvard School of Public Health)

Abstract

Obesity is closely associated with insulin resistance and establishes the leading risk factor for type 2 diabetes mellitus, yet the molecular mechanisms of this association are poorly understood1. The c-Jun amino-terminal kinases (JNKs) can interfere with insulin action in cultured cells2 and are activated by inflammatory cytokines and free fatty acids, molecules that have been implicated in the development of type 2 diabetes3,4. Here we show that JNK activity is abnormally elevated in obesity. Furthermore, an absence of JNK1 results in decreased adiposity, significantly improved insulin sensitivity and enhanced insulin receptor signalling capacity in two different models of mouse obesity. Thus, JNK is a crucial mediator of obesity and insulin resistance and a potential target for therapeutics.

Suggested Citation

  • Jiro Hirosumi & Gürol Tuncman & Lufen Chang & Cem Z. Görgün & K. Teoman Uysal & Kazuhisa Maeda & Michael Karin & Gökhan S. Hotamisligil, 2002. "A central role for JNK in obesity and insulin resistance," Nature, Nature, vol. 420(6913), pages 333-336, November.
  • Handle: RePEc:nat:nature:v:420:y:2002:i:6913:d:10.1038_nature01137
    DOI: 10.1038/nature01137
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01137
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srinivas Pittala & Dhanush Haspula & Yinghong Cui & Won-Mo Yang & Young-Bum Kim & Roger J. Davis & Allison Wing & Yaron Rotman & Owen P. McGuinness & Asuka Inoue & Jürgen Wess, 2024. "G12/13-mediated signaling stimulates hepatic glucose production and has a major impact on whole body glucose homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Isabel Reinisch & Helene Michenthaler & Alba Sulaj & Elisabeth Moyschewitz & Jelena Krstic & Markus Galhuber & Ruonan Xu & Zina Riahi & Tongtong Wang & Nemanja Vujic & Melina Amor & Riccardo Zenezini , 2024. "Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Matthew J Maley & Andrew P Hunt & Ian B Stewart & Steve H Faulkner & Geoffrey M Minett, 2019. "Passive heating and glycaemic control in non-diabetic and diabetic individuals: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-18, March.
    4. E. Havula & S. Ghazanfar & N. Lamichane & D. Francis & K. Hasygar & Y. Liu & L. A. Alton & J. Johnstone & E. J. Needham & T. Pulpitel & T. Clark & H. N. Niranjan & V. Shang & V. Tong & N. Jiwnani & G., 2022. "Genetic variation of macronutrient tolerance in Drosophila melanogaster," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Marko Groeger & Koji Matsuo & Emad Heidary Arash & Ashley Pereira & Dounia Guillou & Cindy Pino & Kayque A. Telles-Silva & Jacquelyn J. Maher & Edward C. Hsiao & Holger Willenbring, 2023. "Modeling and therapeutic targeting of inflammation-induced hepatic insulin resistance using human iPSC-derived hepatocytes and macrophages," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:420:y:2002:i:6913:d:10.1038_nature01137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.