IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39311-w.html
   My bibliography  Save this article

Modeling and therapeutic targeting of inflammation-induced hepatic insulin resistance using human iPSC-derived hepatocytes and macrophages

Author

Listed:
  • Marko Groeger

    (University of California San Francisco
    University of California San Francisco)

  • Koji Matsuo

    (University of California San Francisco
    University of California San Francisco)

  • Emad Heidary Arash

    (University of California San Francisco
    University of California San Francisco)

  • Ashley Pereira

    (University of California San Francisco
    University of California San Francisco)

  • Dounia Guillou

    (University of California San Francisco
    University of California San Francisco)

  • Cindy Pino

    (University of California San Francisco
    University of California San Francisco)

  • Kayque A. Telles-Silva

    (University of California San Francisco
    University of Sao Paulo)

  • Jacquelyn J. Maher

    (University of California San Francisco
    University of California San Francisco)

  • Edward C. Hsiao

    (University of California San Francisco
    University of California San Francisco
    University of California San Francisco)

  • Holger Willenbring

    (University of California San Francisco
    University of California San Francisco
    University of California San Francisco)

Abstract

Hepatic insulin resistance is recognized as a driver of type 2 diabetes and fatty liver disease but specific therapies are lacking. Here we explore the potential of human induced pluripotent stem cells (iPSCs) for modeling hepatic insulin resistance in vitro, with a focus on resolving the controversy about the impact of inflammation in the absence of steatosis. For this, we establish the complex insulin signaling cascade and the multiple inter-dependent functions constituting hepatic glucose metabolism in iPSC-derived hepatocytes (iPSC-Heps). Co-culture of these insulin-sensitive iPSC-Heps with isogenic iPSC-derived pro-inflammatory macrophages induces glucose output by preventing insulin from inhibiting gluconeogenesis and glycogenolysis and activating glycolysis. Screening identifies TNFα and IL1β as the mediators of insulin resistance in iPSC-Heps. Neutralizing these cytokines together restores insulin sensitivity in iPSC-Heps more effectively than individual inhibition, reflecting specific effects on insulin signaling and glucose metabolism mediated by NF-κB or JNK. These results show that inflammation is sufficient to induce hepatic insulin resistance and establish a human iPSC-based in vitro model to mechanistically dissect and therapeutically target this metabolic disease driver.

Suggested Citation

  • Marko Groeger & Koji Matsuo & Emad Heidary Arash & Ashley Pereira & Dounia Guillou & Cindy Pino & Kayque A. Telles-Silva & Jacquelyn J. Maher & Edward C. Hsiao & Holger Willenbring, 2023. "Modeling and therapeutic targeting of inflammation-induced hepatic insulin resistance using human iPSC-derived hepatocytes and macrophages," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39311-w
    DOI: 10.1038/s41467-023-39311-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39311-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39311-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul M. Titchenell & Qingwei Chu & Bobby R. Monks & Morris J. Birnbaum, 2015. "Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    2. Jiro Hirosumi & Gürol Tuncman & Lufen Chang & Cem Z. Görgün & K. Teoman Uysal & Kazuhisa Maeda & Michael Karin & Gökhan S. Hotamisligil, 2002. "A central role for JNK in obesity and insulin resistance," Nature, Nature, vol. 420(6913), pages 333-336, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Qi & Marko Groeger & Aditi Sharma & Ishan Goswami & Erzhen Chen & Fenmiao Zhong & Apsara Ram & Kevin Healy & Edward C. Hsiao & Holger Willenbring & Andreas Stahl, 2024. "Adipocyte inflammation is the primary driver of hepatic insulin resistance in a human iPSC-based microphysiological system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srinivas Pittala & Dhanush Haspula & Yinghong Cui & Won-Mo Yang & Young-Bum Kim & Roger J. Davis & Allison Wing & Yaron Rotman & Owen P. McGuinness & Asuka Inoue & Jürgen Wess, 2024. "G12/13-mediated signaling stimulates hepatic glucose production and has a major impact on whole body glucose homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Isabel Reinisch & Helene Michenthaler & Alba Sulaj & Elisabeth Moyschewitz & Jelena Krstic & Markus Galhuber & Ruonan Xu & Zina Riahi & Tongtong Wang & Nemanja Vujic & Melina Amor & Riccardo Zenezini , 2024. "Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Matthew J Maley & Andrew P Hunt & Ian B Stewart & Steve H Faulkner & Geoffrey M Minett, 2019. "Passive heating and glycaemic control in non-diabetic and diabetic individuals: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-18, March.
    4. E. Havula & S. Ghazanfar & N. Lamichane & D. Francis & K. Hasygar & Y. Liu & L. A. Alton & J. Johnstone & E. J. Needham & T. Pulpitel & T. Clark & H. N. Niranjan & V. Shang & V. Tong & N. Jiwnani & G., 2022. "Genetic variation of macronutrient tolerance in Drosophila melanogaster," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39311-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.