IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v416y2002i6881d10.1038_416608a.html
   My bibliography  Save this article

Scaling of entanglement close to a quantum phase transition

Author

Listed:
  • A. Osterloh

    (Dipartimento di Metodologie Fisiche e Chimiche (DMFCI)
    NEST-INFM)

  • Luigi Amico

    (Dipartimento di Metodologie Fisiche e Chimiche (DMFCI)
    NEST-INFM)

  • G. Falci

    (Dipartimento di Metodologie Fisiche e Chimiche (DMFCI)
    NEST-INFM)

  • Rosario Fazio

    (NEST-INFM
    Scuola Normale Superiore)

Abstract

Classical phase transitions occur when a physical system reaches a state below a critical temperature characterized by macroscopic order1. Quantum phase transitions occur at absolute zero; they are induced by the change of an external parameter or coupling constant2, and are driven by quantum fluctuations. Examples include transitions in quantum Hall systems3, localization in Si-MOSFETs (metal oxide silicon field-effect transistors; ref. 4) and the superconductor–insulator transition in two-dimensional systems5,6. Both classical and quantum critical points are governed by a diverging correlation length, although quantum systems possess additional correlations that do not have a classical counterpart. This phenomenon, known as entanglement, is the resource that enables quantum computation and communication8. The role of entanglement at a phase transition is not captured by statistical mechanics—a complete classification of the critical many-body state requires the introduction of concepts from quantum information theory9. Here we connect the theory of critical phenomena with quantum information by exploring the entangling resources of a system close to its quantum critical point. We demonstrate, for a class of one-dimensional magnetic systems, that entanglement shows scaling behaviour in the vicinity of the transition point.

Suggested Citation

  • A. Osterloh & Luigi Amico & G. Falci & Rosario Fazio, 2002. "Scaling of entanglement close to a quantum phase transition," Nature, Nature, vol. 416(6881), pages 608-610, April.
  • Handle: RePEc:nat:nature:v:416:y:2002:i:6881:d:10.1038_416608a
    DOI: 10.1038/416608a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/416608a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/416608a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mzaouali, Zakaria & El Baz, Morad, 2019. "Long range quantum coherence, quantum & classical correlations in Heisenberg XX chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 119-130.
    2. Ferenc Iglói & Csaba Zoltán Király, 2024. "Entanglement detection in postquench nonequilibrium states: thermal Gibbs vs. generalized Gibbs ensemble," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-12, June.
    3. Mohammad Pouranvari, 2023. "Characterizing the delocalized–localized Anderson phase transition based on the system’s response to boundary conditions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-7, April.
    4. Wang, Yimin & Su, Yang & Liu, Maoxin & You, Wen-Long, 2020. "Entanglement measures in the quantum Rabi model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    5. Joyia, Wajid & Khan, Salman & Khan, Khalid & Khan, Mahtab Ahmad, 2022. "Exploring the Koch fractal lattice with quantum renormalization group method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    6. Zheng, Yi-Dan & Mao, Zhu & Zhou, Bin, 2022. "Optimal dense coding and quantum phase transition in Ising-XXZ diamond chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:416:y:2002:i:6881:d:10.1038_416608a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.