IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6872d10.1038_415686a.html
   My bibliography  Save this article

Medical need, scientific opportunity and the drive for antimalarial drugs

Author

Listed:
  • Robert G. Ridley

    (Medicines for Malaria Venture)

Abstract

Continued and sustainable improvements in antimalarial medicines through focused research and development are essential for the world's future ability to treat and control malaria. Unfortunately, malaria is a disease of poverty, and despite a wealth of scientific knowledge there is insufficient market incentive to generate the competitive, business-driven industrial antimalarial drug research and development that is normally needed to deliver new products. Mechanisms of partnering with industry have been established to overcome this obstacle and to open up and build on scientific opportunities for improved chemotherapy in the future.

Suggested Citation

  • Robert G. Ridley, 2002. "Medical need, scientific opportunity and the drive for antimalarial drugs," Nature, Nature, vol. 415(6872), pages 686-693, February.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6872:d:10.1038_415686a
    DOI: 10.1038/415686a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415686a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415686a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaqub, Ohid & Nightingale, Paul, 2012. "Vaccine innovation, translational research and the management of knowledge accumulation," Social Science & Medicine, Elsevier, vol. 75(12), pages 2143-2150.
    2. Patrick G Blachly & César A F de Oliveira & Sarah L Williams & J Andrew McCammon, 2013. "Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6872:d:10.1038_415686a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.