IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v415y2002i6868d10.1038_415150a.html
   My bibliography  Save this article

Transition-metal-based magnetic refrigerants for room-temperature applications

Author

Listed:
  • O. Tegus

    (Van der Waals-Zeeman Instituut, Universiteit van Amsterdam)

  • E. Brück

    (Van der Waals-Zeeman Instituut, Universiteit van Amsterdam)

  • K. H. J. Buschow

    (Van der Waals-Zeeman Instituut, Universiteit van Amsterdam)

  • F. R. de Boer

    (Van der Waals-Zeeman Instituut, Universiteit van Amsterdam)

Abstract

Magnetic refrigeration techniques based on the magnetocaloric effect (MCE) have recently been demonstrated as a promising alternative to conventional vapour-cycle refrigeration1. In a material displaying the MCE, the alignment of randomly oriented magnetic moments by an external magnetic field results in heating. This heat can then be removed from the MCE material to the ambient atmosphere by heat transfer. If the magnetic field is subsequently turned off, the magnetic moments randomize again, which leads to cooling of the material below the ambient temperature. Here we report the discovery of a large magnetic entropy change in MnFeP0.45As0.55, a material that has a Curie temperature of about 300 K and which allows magnetic refrigeration at room temperature. The magnetic entropy changes reach values of 14.5 J K-1 kg-1 and 18 J K-1 kg-1 for field changes of 2 T and 5 T, respectively. The so-called giant-MCE material Gd5Ge2Si2 (ref. 2) displays similar entropy changes, but can only be used below room temperature. The refrigerant capacity of our material is also significantly greater than that of Gd (ref. 3). The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field.

Suggested Citation

  • O. Tegus & E. Brück & K. H. J. Buschow & F. R. de Boer, 2002. "Transition-metal-based magnetic refrigerants for room-temperature applications," Nature, Nature, vol. 415(6868), pages 150-152, January.
  • Handle: RePEc:nat:nature:v:415:y:2002:i:6868:d:10.1038_415150a
    DOI: 10.1038/415150a
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/415150a
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/415150a?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Haodong & Ma, Zhihui & Liu, Xianliang & Qiao, Kaiming & Xie, Longlong & Li, Zhenxing & Shen, Jun & Dai, Wei & Ou, Zhiqiang & Yibole, Hargen & Tegus, Ojiyed & Taskaev, Sergey V. & Chu, Ke & Long,, 2022. "Evaluation of thermomagnetic generation performance of classic magnetocaloric materials for harvesting low-grade waste heat," Applied Energy, Elsevier, vol. 306(PA).
    2. Yi-Hong Gao & Dong-Hui Wang & Feng-Xia Hu & Qing-Zhen Huang & You-Ting Song & Shuai-Kang Yuan & Zheng-Ying Tian & Bing-Jie Wang & Zi-Bing Yu & Hou-Bo Zhou & Yue Kan & Yuan Lin & Jing Wang & Yun-liang , 2024. "Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Xia, Zhengrong & Zhang, Yue & Chen, Jincan & Lin, Guoxing, 2008. "Performance analysis and parametric optimal criteria of an irreversible magnetic Brayton-refrigerator," Applied Energy, Elsevier, vol. 85(2-3), pages 159-170, February.
    4. Shin-ichi Ohkoshi & Kosuke Nakagawa & Marie Yoshikiyo & Asuka Namai & Kenta Imoto & Yugo Nagane & Fangda Jia & Olaf Stefanczyk & Hiroko Tokoro & Junhao Wang & Takeshi Sugahara & Kouji Chiba & Kazuhiko, 2023. "Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Balli, M. & Sari, O. & Mahmed, C. & Besson, Ch. & Bonhote, Ph. & Duc, D. & Forchelet, J., 2012. "A pre-industrial magnetic cooling system for room temperature application," Applied Energy, Elsevier, vol. 98(C), pages 556-561.
    6. Xin Tang & H. Sepehri-Amin & N. Terada & A. Martin-Cid & I. Kurniawan & S. Kobayashi & Y. Kotani & H. Takeya & J. Lai & Y. Matsushita & T. Ohkubo & Y. Miura & T. Nakamura & K. Hono, 2022. "Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:415:y:2002:i:6868:d:10.1038_415150a. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.