IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v413y2001i6852d10.1038_35093026.html
   My bibliography  Save this article

How the olfactory system makes sense of scents

Author

Listed:
  • Stuart Firestein

    (Columbia University)

Abstract

The human nose is often considered something of a luxury, but in the rest of the animal world, from bacteria to mammals, detecting chemicals in the environment has been critical to the successful organism. An indication of the importance of olfactory systems is the significant proportion — as much as 4% — of the genomes of many higher eukaryotes that is devoted to encoding the proteins of smell. Growing interest in the detection of diverse compounds at single-molecule levels has made the olfactory system an important system for biological modelling.

Suggested Citation

  • Stuart Firestein, 2001. "How the olfactory system makes sense of scents," Nature, Nature, vol. 413(6852), pages 211-218, September.
  • Handle: RePEc:nat:nature:v:413:y:2001:i:6852:d:10.1038_35093026
    DOI: 10.1038/35093026
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35093026
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35093026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jane S. Huang & Tenzin Kunkhyen & Alexander N. Rangel & Taryn R. Brechbill & Jordan D. Gregory & Emily D. Winson-Bushby & Beichen Liu & Jonathan T. Avon & Ryan J. Muggleton & Claire E. J. Cheetham, 2022. "Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2012. "Model architecture for associative memory in a neural network of spiking neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 843-848.
    3. Hao-Ching Jiang & Sung Jin Park & I-Hao Wang & Daniel M. Bear & Alexandra Nowlan & Paul L. Greer, 2024. "CD20/MS4A1 is a mammalian olfactory receptor expressed in a subset of olfactory sensory neurons that mediates innate avoidance of predators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Chulwon Choi & Jungnam Bae & Seonghan Kim & Seho Lee & Hyunook Kang & Jinuk Kim & Injin Bang & Kiheon Kim & Won-Ki Huh & Chaok Seok & Hahnbeom Park & Wonpil Im & Hee-Jung Choi, 2023. "Understanding the molecular mechanisms of odorant binding and activation of the human OR52 family," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Marylène Rugard & Thomas Jaylet & Olivier Taboureau & Anne Tromelin & Karine Audouze, 2021. "Smell compounds classification using UMAP to increase knowledge of odors and molecular structures linkages," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.
    6. Anastasiia Gusach & Yang Lee & Armin Nikpour Khoshgrudi & Elizaveta Mukhaleva & Ning Ma & Eline J. Koers & Qingchao Chen & Patricia C. Edwards & Fanglu Huang & Jonathan Kim & Filippo Mancia & Dmitry B, 2024. "Molecular recognition of an odorant by the murine trace amine-associated receptor TAAR7f," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Silva, Joaquim & Sá, Elisabete Sampaio & Escadas, Marco & Carvalho, Joana, 2021. "The influence of ambient scent on the passengers’ experience, emotions and behavioral intentions: An experimental study in a Public Bus service," Transport Policy, Elsevier, vol. 106(C), pages 88-98.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:413:y:2001:i:6852:d:10.1038_35093026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.