IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6840d10.1038_35082010.html
   My bibliography  Save this article

Skyrmions in a ferromagnetic Bose–Einstein condensate

Author

Listed:
  • Usama Al Khawaja

    (Institute for Theoretical Physics, University of Utrecht)

  • Henk Stoof

    (Institute for Theoretical Physics, University of Utrecht)

Abstract

Multi-component Bose–Einstein condensates1,2,3 provide opportunities to explore experimentally the wealth of physics associated with the spin degrees of freedom4,5,6,7. The ground-state properties8,9,10,11 and line-like vortex excitations8,12,13 of these quantum systems have been studied theoretically. In principle, nontrivial spin textures consisting of point-like topological excitations, or skyrmions14,15, could exist in a multi-component Bose–Einstein condensate, owing to the superfluid nature of the gas. Although skyrmion excitations are already known in the context of nuclear physics and the quantum-Hall effect, creating these excitations in an atomic condensate would offer an opportunity to study their physical behaviour in much greater detail, while also enabling an ab initio comparison between theory and experiment. Here we investigate theoretically the stability of skyrmions in a fictitious spin-1/2 condensate of 87Rb atoms. We find that skyrmions can exist in such a gas only as a metastable state, but with a lifetime comparable to (or even longer than) the typical lifetime of the condensate itself.

Suggested Citation

  • Usama Al Khawaja & Henk Stoof, 2001. "Skyrmions in a ferromagnetic Bose–Einstein condensate," Nature, Nature, vol. 411(6840), pages 918-920, June.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6840:d:10.1038_35082010
    DOI: 10.1038/35082010
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35082010
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35082010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zi-Lan Deng & Tan Shi & Alex Krasnok & Xiangping Li & Andrea Alù, 2022. "Observation of localized magnetic plasmon skyrmions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Rodolfo Subert & Gerardo Campos-Villalobos & Marjolein Dijkstra, 2024. "Achiral hard bananas assemble double-twist skyrmions and blue phases," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6840:d:10.1038_35082010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.