IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27710-w.html
   My bibliography  Save this article

Observation of localized magnetic plasmon skyrmions

Author

Listed:
  • Zi-Lan Deng

    (Jinan University
    City University of New York)

  • Tan Shi

    (Jinan University)

  • Alex Krasnok

    (City University of New York
    Florida International University)

  • Xiangping Li

    (Jinan University)

  • Andrea Alù

    (City University of New York
    City University of New York)

Abstract

Optical skyrmions have recently been constructed by tailoring vectorial near-field distributions through the interference of multiple surface plasmon polaritons, offering promising features for advanced information processing, transport and storage. Here, we provide experimental demonstration of electromagnetic skyrmions based on magnetic localized spoof plasmons (LSP) showing large topological robustness against continuous deformations, without stringent external interference conditions. By directly measuring the spatial profile of all three vectorial magnetic fields, we reveal multiple π-twist target skyrmion configurations mapped to multi-resonant near-equidistant LSP eigenmodes. The real-space skyrmion topology is robust against deformations of the meta-structure, demonstrating flexible skyrmionic textures for arbitrary shapes. The observed magnetic LSP skyrmions pave the way to ultra-compact and robust plasmonic devices, such as flexible sensors, wearable electronics and ultra-compact antennas.

Suggested Citation

  • Zi-Lan Deng & Tan Shi & Alex Krasnok & Xiangping Li & Andrea Alù, 2022. "Observation of localized magnetic plasmon skyrmions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27710-w
    DOI: 10.1038/s41467-021-27710-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27710-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27710-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun-ichi Fukuda & Slobodan Žumer, 2011. "Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
    2. Usama Al Khawaja & Henk Stoof, 2001. "Skyrmions in a ferromagnetic Bose–Einstein condensate," Nature, Nature, vol. 411(6840), pages 918-920, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jidan Yang & Yu Zou & Wentao Tang & Jinxing Li & Mingjun Huang & Satoshi Aya, 2022. "Spontaneous electric-polarization topology in confined ferroelectric nematics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Frederic Rendell-Bhatti & Raymond J. Lamb & Johannes W. Jagt & Gary W. Paterson & Henk J. M. Swagten & Damien McGrouther, 2020. "Spontaneous creation and annihilation dynamics and strain-limited stability of magnetic skyrmions," Nature Communications, Nature, vol. 11(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27710-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.