IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6838d10.1038_35079612.html
   My bibliography  Save this article

Retinal ganglion cells act largely as independent encoders

Author

Listed:
  • S. Nirenberg

    (University of California Los Angeles)

  • S. M. Carcieri

    (University of California Los Angeles)

  • A. L. Jacobs

    (University of California Los Angeles)

  • P. E. Latham

    (University of California Los Angeles)

Abstract

Correlated firing among neurons is widespread in the visual system. Neighbouring neurons, in areas from retina to cortex, tend to fire together more often than would be expected by chance. The importance of this correlated firing for encoding visual information is unclear and controversial1,2,3,4,5. Here we examine its importance in the retina. We present the retina with natural stimuli and record the responses of its output cells, the ganglion cells. We then use information theoretic techniques to measure the amount of information about the stimuli that can be obtained from the cells under two conditions: when their correlated firing is taken into account, and when their correlated firing is ignored. We find that more than 90% of the information about the stimuli can be obtained from the cells when their correlated firing is ignored. This indicates that ganglion cells act largely independently to encode information, which greatly simplifies the problem of decoding their activity.

Suggested Citation

  • S. Nirenberg & S. M. Carcieri & A. L. Jacobs & P. E. Latham, 2001. "Retinal ganglion cells act largely as independent encoders," Nature, Nature, vol. 411(6838), pages 698-701, June.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6838:d:10.1038_35079612
    DOI: 10.1038/35079612
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35079612
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35079612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric G. Wu & Nora Brackbill & Colleen Rhoades & Alexandra Kling & Alex R. Gogliettino & Nishal P. Shah & Alexander Sher & Alan M. Litke & Eero P. Simoncelli & E. J. Chichilnisky, 2024. "Fixational eye movements enhance the precision of visual information transmitted by the primate retina," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Benjamin L Walker & Katherine A Newhall, 2018. "Inferring information flow in spike-train data sets using a trial-shuffle method," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    3. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    4. James Trousdale & Yu Hu & Eric Shea-Brown & Krešimir Josić, 2012. "Impact of Network Structure and Cellular Response on Spike Time Correlations," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    5. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6838:d:10.1038_35079612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.