IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6836d10.1038_35078099.html
   My bibliography  Save this article

B cells acquire antigen from target cells after synapse formation

Author

Listed:
  • Facundo D. Batista

    (Medical Research Laboratory of Molecular Biology)

  • Dagmar Iber

    (Medical Research Laboratory of Molecular Biology)

  • Michael S. Neuberger

    (Medical Research Laboratory of Molecular Biology)

Abstract

Soluble antigen binds to the B-cell antigen receptor and is internalized for subsequent processing and the presentation of antigen-derived peptides to T cells1. Many antigens are not soluble, however, but are integral components of membrane; furthermore, soluble antigens will usually be encountered in vivo in a membrane-anchored form, tethered by Fc or complement receptors2,3,4. Here we show that B-cell interaction with antigens that are immobilized on the surface of a target cell leads to the formation of a synapse and the acquisition, even, of membrane-integral antigens from the target. B-cell antigen receptor accumulates at the synapse, segregated from the CD45 co-receptor which is excluded from the synapse, and there is a corresponding polarization of cytoplasmic effectors in the B cell. B-cell antigen receptor mediates the gathering of antigen into the synapse and its subsequent acquisition, thereby potentiating antigen processing and presentation to T cells with high efficacy. Synapse formation and antigen acquisition will probably enhance the activation of B cells at low antigen concentration, allow context-dependent antigen recognition and enhance the linking of B- and T-cell epitopes.

Suggested Citation

  • Facundo D. Batista & Dagmar Iber & Michael S. Neuberger, 2001. "B cells acquire antigen from target cells after synapse formation," Nature, Nature, vol. 411(6836), pages 489-494, May.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6836:d:10.1038_35078099
    DOI: 10.1038/35078099
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35078099
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35078099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eike-Christian Wamhoff & Larance Ronsard & Jared Feldman & Grant A. Knappe & Blake M. Hauser & Anna Romanov & James Brett Case & Shilpa Sanapala & Evan C. Lam & Kerri J. St. Denis & Julie Boucau & Amy, 2024. "Enhancing antibody responses by multivalent antigen display on thymus-independent DNA origami scaffolds," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Hassan N. Althurwi & Khalid M. Alharthy & Faisal F. Albaqami & Ali Altharawi & Muhammad Rizwan Javed & Ziyad Tariq Muhseen & Muhammad Tahir ul Qamar, 2022. "mRNA-Based Vaccine Designing against Epstein-Barr Virus to Induce an Immune Response Using Immunoinformatic and Molecular Modelling Approaches," IJERPH, MDPI, vol. 19(20), pages 1-21, October.
    3. Jonathan D. Worboys & Katherine N. Vowell & Roseanna K. Hare & Ashley R. Ambrose & Margherita Bertuzzi & Michael A. Conner & Florence P. Patel & William H. Zammit & Judit Gali-Moya & Khodor S. Hazime , 2023. "TIGIT can inhibit T cell activation via ligation-induced nanoclusters, independent of CD226 co-stimulation," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Julia Merkenschlager & Riza-Maria Berz & Victor Ramos & Maximilian Uhlig & Andrew J. MacLean & Carla R. Nowosad & Thiago Y. Oliveira & Michel C. Nussenzweig, 2023. "Continually recruited naïve T cells contribute to the follicular helper and regulatory T cell pools in germinal centers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6836:d:10.1038_35078099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.