IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v411y2001i6835d10.1038_35077225.html
   My bibliography  Save this article

Oncogenic kinase signalling

Author

Listed:
  • Peter Blume-Jensen

    (The Salk Institute, Molecular and Cell Biology Laboratory
    Serono Reproductive Biology Institute)

  • Tony Hunter

    (The Salk Institute, Molecular and Cell Biology Laboratory
    Serono Reproductive Biology Institute)

Abstract

Protein-tyrosine kinases (PTKs) are important regulators of intracellular signal-transduction pathways mediating development and multicellular communication in metazoans. Their activity is normally tightly controlled and regulated. Perturbation of PTK signalling by mutations and other genetic alterations results in deregulated kinase activity and malignant transformation. The lipid kinase phosphoinositide 3-OH kinase (PI(3)K) and some of its downstream targets, such as the protein-serine/threonine kinases Akt and p70 S6 kinase (p70S6K), are crucial effectors in oncogenic PTK signalling. This review emphasizes how oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity and provides an update on our knowledge about the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies.

Suggested Citation

  • Peter Blume-Jensen & Tony Hunter, 2001. "Oncogenic kinase signalling," Nature, Nature, vol. 411(6835), pages 355-365, May.
  • Handle: RePEc:nat:nature:v:411:y:2001:i:6835:d:10.1038_35077225
    DOI: 10.1038/35077225
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35077225
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35077225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeongah Yoon & Thomas S Deisboeck, 2009. "Investigating Differential Dynamics of the MAPK Signaling Cascade Using a Multi-Parametric Global Sensitivity Analysis," PLOS ONE, Public Library of Science, vol. 4(2), pages 1-14, February.
    2. Gianna Maria Nardi & Elisabetta Ferrara & Ilaria Converti & Francesca Cesarano & Salvatore Scacco & Roberta Grassi & Antonio Gnoni & Felice Roberto Grassi & Biagio Rapone, 2020. "Does Diabetes Induce the Vascular Endothelial Growth Factor (VEGF) Expression in Periodontal Tissues? A Systematic Review," IJERPH, MDPI, vol. 17(8), pages 1-16, April.
    3. Sichun Yang & Benoît Roux, 2008. "Src Kinase Conformational Activation: Thermodynamics, Pathways, and Mechanisms," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-14, March.
    4. Kousik Kundu & Fabrizio Costa & Michael Huber & Michael Reth & Rolf Backofen, 2013. "Semi-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    5. Hipólito Nicolás Cuesta-Hernández & Julia Contreras & Pablo Soriano-Maldonado & Jana Sánchez-Wandelmer & Wayland Yeung & Ana Martín-Hurtado & Inés G. Muñoz & Natarajan Kannan & Marta Llimargas & Javie, 2023. "An allosteric switch between the activation loop and a c-terminal palindromic phospho-motif controls c-Src function," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Hui-Rong Xu & Zhong-Fa Xu & Yan-Lai Sun & Jian-Jun Han & Zeng-Jun Li, 2013. "The −842G/C Polymorphisms of PIN1 Contributes to Cancer Risk: A Meta-Analysis of 10 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-7, August.
    7. Martin Klammer & J Nikolaj Dybowski & Daniel Hoffmann & Christoph Schaab, 2015. "Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-16, June.
    8. Zhongtao Zhao & Qiaojun Jin & Jin-Rong Xu & Huiquan Liu, 2014. "Identification of a Fungi-Specific Lineage of Protein Kinases Closely Related to Tyrosine Kinases," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    9. Qiwei Jiang & Xiaomei Zhang & Xiaoming Dai & Shiyao Han & Xueji Wu & Lei Wang & Wenyi Wei & Ning Zhang & Wei Xie & Jianping Guo, 2022. "S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:411:y:2001:i:6835:d:10.1038_35077225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.