IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v409y2001i6818d10.1038_35053138.html
   My bibliography  Save this article

Crystal structure of the transcription activator BmrR bound to DNA and a drug

Author

Listed:
  • Ekaterina E. Zheleznova Heldwein

    (Oregon Health Sciences University)

  • Richard G. Brennan

    (Oregon Health Sciences University)

Abstract

The efflux of chemically diverse drugs by multidrug transporters that span the membrane1 is one mechanism of multidrug resistance in bacteria. The concentrations of many of these transporters are controlled by transcription regulators, such as BmrR in Bacillus subtilis2, EmrR in Escherichia coli3 and QacR in Staphylococcus aureus 4. These proteins promote transporter gene expression when they bind toxic compounds. BmrR activates transcription of the multidrug transporter gene, bmr, in response to cellular invasion by certain lipophilic cationic compounds (drugs)2,5,6. BmrR belongs to the MerR family, which regulates response to stress such as exposure to toxic compounds or oxygen radicals in bacteria7,8,9,10,11,12. MerR proteins have homologous amino-terminal DNA-binding domains but different carboxy-terminal domains, which enable them to bind specific ‘coactivator’ molecules. When bound to coactivator, MerR proteins upregulate transcription by reconfiguring the 19-base-pair spacer found between the -35 and -10 promoter elements to allow productive interaction with RNA polymerase7,9,10,11,12. Here we report the 3.0 Å resolution structure of BmrR in complex with the drug tetraphenylphosphonium (TPP) and a 22-base-pair oligodeoxynucleotide encompassing the bmr promoter. The structure reveals an unexpected mechanism for transcription activation that involves localized base-pair breaking, and base sliding and realignment of the -35 and -10 operator elements.

Suggested Citation

  • Ekaterina E. Zheleznova Heldwein & Richard G. Brennan, 2001. "Crystal structure of the transcription activator BmrR bound to DNA and a drug," Nature, Nature, vol. 409(6818), pages 378-382, January.
  • Handle: RePEc:nat:nature:v:409:y:2001:i:6818:d:10.1038_35053138
    DOI: 10.1038/35053138
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35053138
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35053138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcus Ziemann & Viktoria Reimann & Yajing Liang & Yue Shi & Honglei Ma & Yuman Xie & Hui Li & Tao Zhu & Xuefeng Lu & Wolfgang R. Hess, 2023. "CvkR is a MerR-type transcriptional repressor of class 2 type V-K CRISPR-associated transposase systems," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Brady A. Travis & Jared V. Peck & Raul Salinas & Brandon Dopkins & Nicholas Lent & Viet D. Nguyen & Mario J. Borgnia & Richard G. Brennan & Maria A. Schumacher, 2022. "Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6818:d:10.1038_35053138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.