IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v409y2001i6818d10.1038_35053024.html
   My bibliography  Save this article

Relationship between structural order and the anomalies of liquid water

Author

Listed:
  • Jeffrey R. Errington

    (Princeton University)

  • Pablo G. Debenedetti

    (Princeton University)

Abstract

In contrast to crystalline solids—for which a precise framework exists for describing structure1—quantifying structural order in liquids and glasses has proved more difficult because even though such systems possess short-range order, they lack long-range crystalline order. Some progress has been made using model systems of hard spheres2,3, but it remains difficult to describe accurately liquids such as water, where directional attractions (hydrogen bonds) combine with short-range repulsions to determine the relative orientation of neighbouring molecules as well as their instantaneous separation. This difficulty is particularly relevant when discussing the anomalous kinetic and thermodynamic properties of water, which have long been interpreted qualitatively in terms of underlying structural causes. Here we attempt to gain a quantitative understanding of these structure–property relationships through the study of translational2,3 and orientational4 order in a model5 of water. Using molecular dynamics simulations, we identify a structurally anomalous region—bounded by loci of maximum orientational order (at low densities) and minimum translational order (at high densities)—in which order decreases on compression, and where orientational and translational order are strongly coupled. This region encloses the entire range of temperatures and densities for which the anomalous diffusivity6,7,8,9 and thermal expansion coefficient10 of water are observed, and enables us to quantify the degree of structural order needed for these anomalies to occur. We also find that these structural, kinetic and thermodynamic anomalies constitute a cascade: they occur consecutively as the degree of order is increased.

Suggested Citation

  • Jeffrey R. Errington & Pablo G. Debenedetti, 2001. "Relationship between structural order and the anomalies of liquid water," Nature, Nature, vol. 409(6818), pages 318-321, January.
  • Handle: RePEc:nat:nature:v:409:y:2001:i:6818:d:10.1038_35053024
    DOI: 10.1038/35053024
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35053024
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35053024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Shi & Anthony J. Cooper & Hajime Tanaka, 2023. "Impact of hierarchical water dipole orderings on the dynamics of aqueous salt solutions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Cardoso, Daniel Souza & Hernandes, Vinicius Fonseca & Nogueira, T.P.O. & Bordin, José Rafael, 2021. "Structural behavior of a two length scale core-softened fluid in two dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Zhao Fan & Hajime Tanaka, 2024. "Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Kanth, Jampa Maruthi Pradeep & Anishetty, Ramesh, 2012. "Molecular mean field theory for liquid water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 439-455.
    5. Tomislav Begušić & Geoffrey A. Blake, 2023. "Two-dimensional infrared-Raman spectroscopy as a probe of water’s tetrahedrality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Stanley, H.Eugene & Buldyrev, Sergey V. & Giovambattista, Nicolas, 2004. "Static heterogeneities in liquid water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 40-47.
    7. Meijia Qiu & Peng Sun & Kai Han & Zhenjiang Pang & Jun Du & Jinliang Li & Jian Chen & Zhong Lin Wang & Wenjie Mai, 2023. "Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80 °C," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Bumstead, M. & Arnold, B. & Turak, A., 2017. "Reproducing morphologies of disorderly self-assembling planar molecules with static and dynamic simulation methods by matching density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 301-314.
    9. Gorban, Alexander, 2007. "Order–disorder separation: Geometric revision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 85-102.
    10. Rizzatti, Eduardo Osório & Gomes Filho, Márcio Sampaio & Malard, Mariana & Barbosa, Marco Aurélio A., 2019. "Waterlike anomalies in the Bose–Hubbard model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 323-330.
    11. Nogueira, T.P.O. & Bordin, José Rafael, 2022. "Patterns in 2D core-softened systems: From sphere to dumbbell colloids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    12. Girardi, Mauricio & Szortyka, Marcia & Barbosa, Marcia C., 2007. "Diffusion anomaly in a three-dimensional lattice gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(2), pages 692-697.
    13. Stephan Thaler & Julija Zavadlav, 2021. "Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6818:d:10.1038_35053024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.