IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v407y2000i6802d10.1038_35030000.html
   My bibliography  Save this article

Loosening of plant cell walls by expansins

Author

Listed:
  • Daniel J. Cosgrove

    (208 Mueller Laboratory, Pennsylvania State University, University Park)

Abstract

Plant cell walls are the starting materials for many commercial products, from lumber, paper and textiles to thickeners, films and explosives. The cell wall is secreted by each cell in the plant body, forming a thin fibreglass-like network with remarkable strength and flexibility. During growth, plant cells secrete a protein called expansin, which unlocks the network of wall polysaccharides, permitting turgor-driven cell enlargement. Germinating grass pollen also secretes an unusual expansin that loosens maternal cell walls to aid penetration of the stigma by the pollen tube. Expansin's action has puzzling implications for plant cell-wall structure. The recent explosion of gene sequences and expression data has given new hints of additional biological functions for expansins.

Suggested Citation

  • Daniel J. Cosgrove, 2000. "Loosening of plant cell walls by expansins," Nature, Nature, vol. 407(6802), pages 321-326, September.
  • Handle: RePEc:nat:nature:v:407:y:2000:i:6802:d:10.1038_35030000
    DOI: 10.1038/35030000
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35030000
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35030000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing Guo & Fang Wang & Dongming Fang & Qiongqiong Lin & Sunil Kumar Sahu & Liuming Luo & Jiani Li & Yewen Chen & Shanshan Dong & Sisi Chen & Yang Liu & Shixiao Luo & Yalong Guo & Huan Liu, 2023. "The genome of Acorus deciphers insights into early monocot evolution," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Meral Yilmaz & Ömür Baysal & Ragip Soner Sīlme, 2021. "The effect of a seed coating with Origanum vulgare essential oil on Clavibacter michiganensis subsp. michiganensis," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 57(3), pages 217-225.
    3. Li Ma & Lingjun Sun & Yinshan Guo & Hong Lin & Zhendong Liu & Kun Li & Xiuwu Guo, 2020. "Transcriptome analysis of table grapes (Vitis vinifera L.) identified a gene network module associated with berry firmness," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-15, August.
    4. Heqiang Lou & Lili Song & Xiaolong Li & Hailing Zi & Weijie Chen & Yadi Gao & Shan Zheng & Zhangjun Fei & Xuepeng Sun & Jiasheng Wu, 2023. "The Torreya grandis genome illuminates the origin and evolution of gymnosperm-specific sciadonic acid biosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:407:y:2000:i:6802:d:10.1038_35030000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.