IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v405y2000i6790d10.1038_35016633.html
   My bibliography  Save this article

Enzymatic production of biohydrogen

Author

Listed:
  • Jonathan Woodward

    (Oak Ridge National Laboratory)

  • Mark Orr

    (Oak Ridge National Laboratory)

  • Kimberley Cordray

    (Oak Ridge National Laboratory)

  • Elias Greenbaum

    (Oak Ridge National Laboratory)

Abstract

Although in theory the amount of hydrogen that could be generated from renewable sources of energy such as cellulose (a polymer of glucose) is vast1, only 16–24% of the maximum stoichiometric yield of hydrogen from glucose (about 12 mol H2 per mol glucose) is typically achieved by biological methods2. Here we show that the enzymes of the oxidative pentose phosphate cycle3,4,5 can be coupled to hydrogenase purified from the bacterium Pyrococcus furiosus, one of only a few hydrogenases that use NADP+ as the electron carrier6, to generate 11.6 mol H2 per mol glucose-6-phosphate. Hydrogen produced by this pathway is the major product, unlike that produced by intermediate metabolic pathways of bacterial fermentation, and therefore has important practical implications for biohydrogen production7.

Suggested Citation

  • Jonathan Woodward & Mark Orr & Kimberley Cordray & Elias Greenbaum, 2000. "Enzymatic production of biohydrogen," Nature, Nature, vol. 405(6790), pages 1014-1015, June.
  • Handle: RePEc:nat:nature:v:405:y:2000:i:6790:d:10.1038_35016633
    DOI: 10.1038/35016633
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35016633
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35016633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samir Bensaid & Bernardo Ruggeri & Guido Saracco, 2015. "Development of a Photosynthetic Microbial Electrochemical Cell (PMEC) Reactor Coupled with Dark Fermentation of Organic Wastes: Medium Term Perspectives," Energies, MDPI, vol. 8(1), pages 1-31, January.
    2. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    3. Harish, B.S & Janaki Ramaiah, M. & Babu Uppuluri, Kiran, 2015. "Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 533-547.
    4. Patel, Anil Kumar & Vaisnav, Neha & Mathur, Anshu & Gupta, Ravi & Tuli, Deepak Kumar, 2016. "Whey waste as potential feedstock for biohydrogen production," Renewable Energy, Elsevier, vol. 98(C), pages 221-225.
    5. Yiyang Liu & Jinze Liu & Hongzhen He & Shanru Yang & Yixiao Wang & Jin Hu & Huan Jin & Tianxiang Cui & Gang Yang & Yong Sun, 2021. "A Review of Enhancement of Biohydrogen Productions by Chemical Addition Using a Supervised Machine Learning Method," Energies, MDPI, vol. 14(18), pages 1-16, September.
    6. Packer, Mike, 2009. "Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy," Energy Policy, Elsevier, vol. 37(9), pages 3428-3437, September.
    7. Azwar, M.Y. & Hussain, M.A. & Abdul-Wahab, A.K., 2014. "Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 158-173.
    8. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:405:y:2000:i:6790:d:10.1038_35016633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.