IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v405y2000i6790d10.1038_35016580.html
   My bibliography  Save this article

Mosaic evolution of brain structure in mammals

Author

Listed:
  • Robert A. Barton

    (Evolutionary Anthropology Research Group, University of Durham)

  • Paul H. Harvey

    (University of Oxford)

Abstract

The mammalian brain comprises a number of functionally distinct systems. It might therefore be expected that natural selection on particular behavioural capacities would have caused size changes selectively, in the systems mediating those capacities1,2,3. It has been claimed, however, that developmental constraints limited such mosaic evolution, causing co-ordinated size change among individual brain components3. Here we analyse comparative data to demonstrate that mosaic change has been an important factor in brain structure evolution. First, the neocortex shows about a fivefold difference in volume between primates and insectivores even after accounting for its scaling relationship with the rest of the brain. Second, brain structures with major anatomical and functional links evolved together independently of evolutionary change in other structures. This is true at the level of both basic brain subdivisions and more fine-grained functional systems. Hence, brain evolution in these groups involved complex relationships among individual brain components.

Suggested Citation

  • Robert A. Barton & Paul H. Harvey, 2000. "Mosaic evolution of brain structure in mammals," Nature, Nature, vol. 405(6790), pages 1055-1058, June.
  • Handle: RePEc:nat:nature:v:405:y:2000:i:6790:d:10.1038_35016580
    DOI: 10.1038/35016580
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35016580
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35016580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eli M Swanson & Kay E Holekamp & Barbara L Lundrigan & Bradley M Arsznov & Sharleen T Sakai, 2012. "Multiple Determinants of Whole and Regional Brain Volume among Terrestrial Carnivorans," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-11, June.
    2. Cecilia L Friedrichs-Maeder & Alessandra Griffa & Juliane Schneider & Petra Susan Hüppi & Anita Truttmann & Patric Hagmann, 2017. "Exploring the role of white matter connectivity in cortex maturation," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    3. Fernandes, Heitor B.F. & Peñaherrera-Aguirre, Mateo & Woodley of Menie, Michael A. & Figueredo, Aurelio José, 2020. "Macroevolutionary patterns and selection modes for general intelligence (G) and for commonly used neuroanatomical volume measures in primates," Intelligence, Elsevier, vol. 80(C).
    4. Andreas Wartel & Patrik Lindenfors & Johan Lind, 2019. "Whatever you want: Inconsistent results are the rule, not the exception, in the study of primate brain evolution," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-15, July.
    5. R. Croston & C.L. Branch & D.Y. Kozlovsky & R. Dukas & V.V. Pravosudov, 2015. "Heritability and the evolution of cognitive traits," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(6), pages 1447-1459.
    6. Antoine Couto & Fletcher J. Young & Daniele Atzeni & Simon Marty & Lina Melo‐Flórez & Laura Hebberecht & Monica Monllor & Chris Neal & Francesco Cicconardi & W. Owen McMillan & Stephen H. Montgomery, 2023. "Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Santos, M.S. & Szezech, J.D. & Borges, F.S. & Iarosz, K.C. & Caldas, I.L. & Batista, A.M. & Viana, R.L. & Kurths, J., 2017. "Chimera-like states in a neuronal network model of the cat brain," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 86-91.
    8. Ernst Schwartz & Karl-Heinz Nenning & Katja Heuer & Nathan Jeffery & Ornella C. Bertrand & Roberto Toro & Gregor Kasprian & Daniela Prayer & Georg Langs, 2023. "Evolution of cortical geometry and its link to function, behaviour and ecology," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:405:y:2000:i:6790:d:10.1038_35016580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.