IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v404y2000i6780d10.1038_35009107.html
   My bibliography  Save this article

Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo

Author

Listed:
  • Balazs Lendvai

    (Hungarian Academy of Sciences)

  • Edward A. Stern

    (Hungarian Academy of Sciences)

  • Brian Chen

    (Hungarian Academy of Sciences)

  • Karel Svoboda

    (Cold Spring Harbor Laboratory
    Hungarian Academy of Sciences)

Abstract

Do changes in neuronal structure underlie cortical plasticity1,2? Here we used time-lapse two-photon microscopy3,4 of pyramidal neurons in layer 2/3 of developing rat barrel cortex5 to image the structural dynamics of dendritic spines and filopodia. We found that these protrusions were highly motile: spines and filopodia appeared, disappeared or changed shape over tens of minutes. To test whether sensory experience drives this motility we trimmed whiskers one to three days before imaging. Sensory deprivation markedly (∼40%) reduced protrusive motility in deprived regions of the barrel cortex during a critical period around postnatal days (P)11–13, but had no effect in younger (P8–10) or older (P14–16) animals. Unexpectedly, whisker trimming did not change the density, length or shape of spines and filopodia. However, sensory deprivation during the critical period degraded the tuning of layer 2/3 receptive fields. Thus sensory experience drives structural plasticity in dendrites, which may underlie the reorganization of neural circuits.

Suggested Citation

  • Balazs Lendvai & Edward A. Stern & Brian Chen & Karel Svoboda, 2000. "Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo," Nature, Nature, vol. 404(6780), pages 876-881, April.
  • Handle: RePEc:nat:nature:v:404:y:2000:i:6780:d:10.1038_35009107
    DOI: 10.1038/35009107
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35009107
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35009107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo Rodriguez & Douglas B Ehlenberger & Dara L Dickstein & Patrick R Hof & Susan L Wearne, 2008. "Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-12, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:404:y:2000:i:6780:d:10.1038_35009107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.