IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v403y2000i6767d10.1038_35002043.html
   My bibliography  Save this article

Natural methyl bromide and methyl chloride emissions from coastal salt marshes

Author

Listed:
  • Robert C. Rhew

    (Scripps Institution of Oceanography, University of California at San Diego)

  • Benjamin R. Miller

    (Scripps Institution of Oceanography, University of California at San Diego)

  • Ray F. Weiss

    (Scripps Institution of Oceanography, University of California at San Diego)

Abstract

Atmospheric methyl bromide (CH3Br) and methyl chloride (CH3Cl), compounds that are involved in stratospheric ozone depletion, originate from both natural and anthropogenic sources. Current estimates of CH3Br and CH3Cl emissions from oceanic sources, terrestrial plants and fungi, biomass burning and anthropogenic inputs do not balance their losses owing to oxidation by hydroxyl radicals, oceanic degradation, and consumption in soils, suggesting that additional natural terrestrial sources may be important1. Here we show that CH3Br and CH3Cl are released to the atmosphere from all vegetation zones of two coastal salt marshes. We see very large fluxes of CH3Br and CH3Cl per unit area: up to 42 and 570 µmol m-2 d-1, respectively. The fluxes show large diurnal, seasonal and spatial variabilities, but there is a strong correlation between the fluxes of CH3Br and those of CH3Cl, with an average molar flux ratio of roughly 1:20. If our measurements are typical of salt marshes globally, they suggest that such ecosystems, even though they constitute less than 0.1% of the global surface area2, may produce roughly 10% of the total fluxes of atmospheric CH3Br and CH3Cl.

Suggested Citation

  • Robert C. Rhew & Benjamin R. Miller & Ray F. Weiss, 2000. "Natural methyl bromide and methyl chloride emissions from coastal salt marshes," Nature, Nature, vol. 403(6767), pages 292-295, January.
  • Handle: RePEc:nat:nature:v:403:y:2000:i:6767:d:10.1038_35002043
    DOI: 10.1038/35002043
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35002043
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35002043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S.T. Forczek & F. Laturnus & J. Doležalová & J. Holík & Z. Wimmer, 2015. "Emission of climate relevant volatile organochlorines by plants occurring in temperate forests," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(3), pages 103-108.
    2. Hui Liu & Tong Tong & Yingying Pu & Bing Sun & Xiaomei Zhu & Zhiyu Yan, 2020. "Insight Into the Formation Paths of Methyl Bromide From Syringic Acid in Aqueous Bromide Solutions Under Simulated Sunlight Irradiation," IJERPH, MDPI, vol. 17(6), pages 1-12, March.
    3. Xiaoyi Hu & Bo Yao & Jens Mühle & Robert C. Rhew & Paul J. Fraser & Simon O’Doherty & Ronald G. Prinn & Xuekun Fang, 2024. "Unexplained high and persistent methyl bromide emissions in China," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Hui Liu & Yingying Pu & Tong Tong & Xiaomei Zhu & Bing Sun & Xiaoxing Zhang, 2020. "Photochemical Generation of Methyl Chloride from Humic Aicd: Impacts of Precursor Concentration, Solution pH, Solution Salinity and Ferric Ion," IJERPH, MDPI, vol. 17(2), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:403:y:2000:i:6767:d:10.1038_35002043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.