IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v402y1999i6763d10.1038_35005534.html
   My bibliography  Save this article

Two subsets of memory T lymphocytes with distinct homing potentials and effector functions

Author

Listed:
  • Federica Sallusto

    (Basel Institute for Immunology)

  • Danielle Lenig

    (Basel Institute for Immunology)

  • Reinhold Förster

    (Max-Delbrueck-Center for Molecular Medicine)

  • Martin Lipp

    (Max-Delbrueck-Center for Molecular Medicine)

  • Antonio Lanzavecchia

    (Basel Institute for Immunology)

Abstract

Originally published as Nature 401, 708–712; 1999 Naive T lymphocytes travel to T-cell areas of secondary lymphoid organs in search of antigen presented by dendritic cells1,2. Once activated, they proliferate vigorously, generating effector cells that can migrate to B-cell areas or to inflamed tissues3,4,5,6. A fraction of primed T lymphocytes persists as circulating memory cells that can confer protection and give, upon secondary challenge, a qualitatively different and quantitatively enhanced response7,8,9. The nature of the cells that mediate the different facets of immunological memory remains unresolved. Here we show that expression of CCR7, a chemokine receptor that controls homing to secondary lymphoid organs, divides human memory T cells into two functionally distinct subsets. CCR7- memory cells express receptors for migration to inflamed tissues and display immediate effector function. In contrast, CCR7+ memory cells express lymph-node homing receptors and lack immediate effector function, but efficiently stimulate dendritic cells and differentiate into CCR7- effector cells upon secondary stimulation. The CCR7+ and CCR7- T cells, which we have named central memory (TCM) and effector memory (TEM), differentiate in a step-wise fashion from naive T cells, persist for years after immunization and allow a division of labour in the memory response.

Suggested Citation

  • Federica Sallusto & Danielle Lenig & Reinhold Förster & Martin Lipp & Antonio Lanzavecchia, 1999. "Two subsets of memory T lymphocytes with distinct homing potentials and effector functions," Nature, Nature, vol. 402(6763), pages 34-38, December.
  • Handle: RePEc:nat:nature:v:402:y:1999:i:6763:d:10.1038_35005534
    DOI: 10.1038/35005534
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35005534
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35005534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daan K. J. Pieren & Sebastián G. Kuguel & Joel Rosado & Alba G. Robles & Joan Rey-Cano & Cristina Mancebo & Juliana Esperalba & Vicenç Falcó & María J. Buzón & Meritxell Genescà, 2023. "Limited induction of polyfunctional lung-resident memory T cells against SARS-CoV-2 by mRNA vaccination compared to infection," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Yiyi Zhang & Sidan Tian & Liping Huang & Yanan Li & Yuan Lu & Hongyu Li & Guiping Chen & Fanling Meng & Gang L. Liu & Xiangliang Yang & Jiasheng Tu & Chunmeng Sun & Liang Luo, 2022. "Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune therapy for postsurgical cancer treatment," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. James M Billingsley & Premeela A Rajakumar & Michelle A Connole & Nadine C Salisch & Sama Adnan & Yury V Kuzmichev & Henoch S Hong & R Keith Reeves & Hyung-joo Kang & Wenjun Li & Qingsheng Li & Ashley, 2015. "Characterization of CD8+ T Cell Differentiation following SIVΔnef Vaccination by Transcription Factor Expression Profiling," PLOS Pathogens, Public Library of Science, vol. 11(3), pages 1-23, March.
    4. Sunil K. Ahuja & Muthu Saravanan Manoharan & Grace C. Lee & Lyle R. McKinnon & Justin A. Meunier & Maristella Steri & Nathan Harper & Edoardo Fiorillo & Alisha M. Smith & Marcos I. Restrepo & Anne P. , 2023. "Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection," Nature Communications, Nature, vol. 14(1), pages 1-31, December.
    5. Daniel B. Reeves & Charline Bacchus-Souffan & Mark Fitch & Mohamed Abdel-Mohsen & Rebecca Hoh & Haelee Ahn & Mars Stone & Frederick Hecht & Jeffrey Martin & Steven G. Deeks & Marc K. Hellerstein & Jos, 2023. "Estimating the contribution of CD4 T cell subset proliferation and differentiation to HIV persistence," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Tejas Menon & Patricia T. Illing & Priyanka Chaurasia & Hayley A. McQuilten & Chloe Shepherd & Louise C. Rowntree & Jan Petersen & Dene R. Littler & Grace Khuu & Ziyi Huang & Lilith F. Allen & Steve R, 2024. "CD8+ T-cell responses towards conserved influenza B virus epitopes across anatomical sites and age," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    7. Yuka Maeda & Hisashi Wada & Daisuke Sugiyama & Takuro Saito & Takuma Irie & Kota Itahashi & Kodai Minoura & Susumu Suzuki & Takashi Kojima & Kazuhiro Kakimi & Jun Nakajima & Takeru Funakoshi & Shinsuk, 2021. "Depletion of central memory CD8+ T cells might impede the antitumor therapeutic effect of Mogamulizumab," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Kaifan Bao & Xiaoqun Gu & Yajun Song & Yijing Zhou & Yanyan Chen & Xi Yu & Weiyuan Yuan & Liyun Shi & Jie Zheng & Min Hong, 2024. "TCF-1 and TOX regulate the memory formation of intestinal group 2 innate lymphoid cells in asthma," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Xinyu Tang & Xinrui Mao & Peiwen Ling & Muxin Yu & Hua Pan & Jiaming Wang & Mingduo Liu & Hong Pan & Wen Qiu & Nan Che & Kai Zhang & Feifan Bao & Hongwei Peng & Qiang Ding & Shui Wang & Wenbin Zhou, 2024. "Glycolysis inhibition induces anti-tumor central memory CD8+T cell differentiation upon combination with microwave ablation therapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Ruka Setoguchi & Tomoya Sengiku & Hiroki Kono & Eiryo Kawakami & Masato Kubo & Tadashi Yamamoto & Shohei Hori, 2024. "Memory CD8 T cells are vulnerable to chronic IFN-γ signals but not to CD4 T cell deficiency in MHCII-deficient mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Sarah Cappuyns & Gino Philips & Vincent Vandecaveye & Bram Boeckx & Rogier Schepers & Thomas Van Brussel & Ingrid Arijs & Aurelie Mechels & Ayse Bassez & Francesca Lodi & Joris Jaekers & Halit Topal &, 2023. "PD-1- CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Nicolas Degauque & Françoise Boeffard & Yohann Foucher & Caroline Ballet & Sophie Brouard & Jean-Paul Soulillou, 2011. "The Blood of Healthy Individuals Exhibits CD8 T Cells with a Highly Altered TCR Vb Repertoire but with an Unmodified Phenotype," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6763:d:10.1038_35005534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.