IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v402y1999i6762d10.1038_45223.html
   My bibliography  Save this article

Large-amplitude cycles of Daphnia and its algal prey in enriched environments

Author

Listed:
  • Edward McCauley

    (University of Calgary)

  • Roger M. Nisbet

    (Evolution, and Marine Biology, University of California)

  • William W. Murdoch

    (Evolution, and Marine Biology, University of California)

  • Andre M. de Roos

    (Section Population Biology, University of Amsterdam)

  • William S. C. Gurney

    (University of Strathclyde)

Abstract

Ecological theory predicts that stable populations should yield to large-amplitude cycles in richer environments1,2,3. This does not occur in nature. The zooplankton Daphnia and its algal prey in lakes throughout the world illustrate the problem4,5,6. Experiments show that this system fits the theory's assumptions7,8,9, yet it is not destabilized by enrichment6. We have tested and rejected four of five proposed explanations10. Here, we investigate the fifth mechanism: inedible algae in nutrient-rich lakes suppress cycles by reducing nutrients available to edible algae. We found three novel results in nutrient-rich microcosms from which inedible algae were excluded. First, as predicted by theory, some Daphnia-edible algal systems now display large-amplitude predator-prey cycles. Second, in the same environment, other populations are stable, showing only small-amplitude demographic cycles. Stability is induced when Daphnia diverts energy from the immediate production of young. Third, the system exhibits coexisting attractors—a stable equilibrium and large-amplitude cycle. We describe a mechanism that flips the system between these two states.

Suggested Citation

  • Edward McCauley & Roger M. Nisbet & William W. Murdoch & Andre M. de Roos & William S. C. Gurney, 1999. "Large-amplitude cycles of Daphnia and its algal prey in enriched environments," Nature, Nature, vol. 402(6762), pages 653-656, December.
  • Handle: RePEc:nat:nature:v:402:y:1999:i:6762:d:10.1038_45223
    DOI: 10.1038/45223
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/45223
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/45223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nisbet, Roger M. & Martin, Benjamin T. & de Roos, Andre M., 2016. "Integrating ecological insight derived from individual-based simulations and physiologically structured population models," Ecological Modelling, Elsevier, vol. 326(C), pages 101-112.
    2. Morozov, Andrew & Sen, Moitri & Banerjee, Malay, 2012. "Top-down control in a patchy environment: Revisiting the stabilizing role of food-dependent predator dispersal," Theoretical Population Biology, Elsevier, vol. 81(1), pages 9-19.
    3. Ginzburg, Lev R. & Jensen, Christopher X.J. & Yule, Jeffrey V., 2007. "Aiming the “unreasonable effectiveness of mathematics” at ecological theory," Ecological Modelling, Elsevier, vol. 207(2), pages 356-362.
    4. Cabrera F, María I., 2011. "Deterministic approach to the study of the interaction predator–prey in a chemostat with predator mutual interference. Implications for the paradox of enrichment," Ecological Modelling, Elsevier, vol. 222(3), pages 598-605.
    5. Vanoverbeke, Joost, 2008. "Modeling individual and population dynamics in a consumer–resource system: Behavior under food limitation and crowding and the effect on population cycling in Daphnia," Ecological Modelling, Elsevier, vol. 216(3), pages 385-401.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6762:d:10.1038_45223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.