IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v81y2012i1p9-19.html
   My bibliography  Save this article

Top-down control in a patchy environment: Revisiting the stabilizing role of food-dependent predator dispersal

Author

Listed:
  • Morozov, Andrew
  • Sen, Moitri
  • Banerjee, Malay

Abstract

In this paper, we revisit the stabilizing role that predator dispersal and aggregation have in the top-down regulation of predator–prey systems in a heterogeneous environment. We consider an environment consisting of sites interconnected by dispersal, and propose a novel mechanism of stabilization for the case with a non-sigmoid functional response of predators. We assume that the carrying capacity of the prey is infinitely large in each site, and show that successful top-down regulation of this otherwise globally unstable system is made possible through an interplay between the unevenness of prey fitness across the sites and the rapid food-dependent migration of predators. We argue that this mechanism of stabilization is different from those previously reported in the literature: in particular, it requires a high degree of synchronicity in local oscillations of species densities across the sites. Prey outbreaks take place synchronously, but the unevenness of prey growth rates across the sites results in a pronounced difference in the species densities, and so the predator quickly disperses to the sites with the highest prey abundances. For this reason, the consumption of prey mostly takes place in the sites with high densities of prey, which assures an efficient suppression of outbreaks. Furthermore, when the total size of prey population is low, the distribution of both species among the sites becomes more even, and this prevents overconsumption of the prey by the predator. Finally, we put forward the hypothesis that this mechanism, when considered in a tri-trophic plankton community in the water column, can explain the stability of the nutrient-rich low-chlorophyll open ocean regions.

Suggested Citation

  • Morozov, Andrew & Sen, Moitri & Banerjee, Malay, 2012. "Top-down control in a patchy environment: Revisiting the stabilizing role of food-dependent predator dispersal," Theoretical Population Biology, Elsevier, vol. 81(1), pages 9-19.
  • Handle: RePEc:eee:thpobi:v:81:y:2012:i:1:p:9-19
    DOI: 10.1016/j.tpb.2011.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058091100089X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2011.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward McCauley & Roger M. Nisbet & William W. Murdoch & Andre M. de Roos & William S. C. Gurney, 1999. "Large-amplitude cycles of Daphnia and its algal prey in enriched environments," Nature, Nature, vol. 402(6762), pages 653-656, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ginzburg, Lev R. & Jensen, Christopher X.J. & Yule, Jeffrey V., 2007. "Aiming the “unreasonable effectiveness of mathematics” at ecological theory," Ecological Modelling, Elsevier, vol. 207(2), pages 356-362.
    2. Cabrera F, María I., 2011. "Deterministic approach to the study of the interaction predator–prey in a chemostat with predator mutual interference. Implications for the paradox of enrichment," Ecological Modelling, Elsevier, vol. 222(3), pages 598-605.
    3. Nisbet, Roger M. & Martin, Benjamin T. & de Roos, Andre M., 2016. "Integrating ecological insight derived from individual-based simulations and physiologically structured population models," Ecological Modelling, Elsevier, vol. 326(C), pages 101-112.
    4. Vanoverbeke, Joost, 2008. "Modeling individual and population dynamics in a consumer–resource system: Behavior under food limitation and crowding and the effect on population cycling in Daphnia," Ecological Modelling, Elsevier, vol. 216(3), pages 385-401.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:81:y:2012:i:1:p:9-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.