IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v402y1999i6759d10.1038_46279.html
   My bibliography  Save this article

Use of behavioural stochastic resonance by paddle fish for feeding

Author

Listed:
  • David F. Russell

    (Center for Neurodynamics, University of Missouri at St. Louis)

  • Lon A. Wilkens

    (Center for Neurodynamics, University of Missouri at St. Louis)

  • Frank Moss

    (Center for Neurodynamics, University of Missouri at St. Louis)

Abstract

Stochastic resonance is the phenomenon whereby the addition of an optimal level of noise to a weak information-carrying input to certain nonlinear systems can enhance the information content at their outputs1,2,3,4. Computer analysis of spike trains has been needed to reveal stochastic resonance in the responses of sensory receptors5,6,7 except for one study on human psychophysics8. But is an animal aware of, and can it make use of, the enhanced sensory information from stochastic resonance? Here, we show that stochastic resonance enhances the normal feeding behaviour of paddlefish (Polyodon spathula)9,10, which use passive electroreceptors11,12 to detect electrical signals from planktonic prey13. We demonstrate significant broadening of the spatial range for the detection of plankton when a noisy electric field of optimal amplitude is applied in the water. We also show that swarms of Daphnia plankton are a natural source of electrical noise. Our demonstration of stochastic resonance at the level of a vital animal behaviour, feeding, which has probably evolved for functional success, provides evidence that stochastic resonance in sensory nervous systems is an evolutionary adaptation14.

Suggested Citation

  • David F. Russell & Lon A. Wilkens & Frank Moss, 1999. "Use of behavioural stochastic resonance by paddle fish for feeding," Nature, Nature, vol. 402(6759), pages 291-294, November.
  • Handle: RePEc:nat:nature:v:402:y:1999:i:6759:d:10.1038_46279
    DOI: 10.1038/46279
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/46279
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/46279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shogo Yonekura & Yasuo Kuniyoshi, 2017. "Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    2. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Fabing Duan & François Chapeau-Blondeau & Derek Abbott, 2014. "Stochastic Resonance with Colored Noise for Neural Signal Detection," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-7, March.
    6. Ueda, Michihito, 2010. "Improvement of signal-to-noise ratio by stochastic resonance in sigmoid function threshold systems, demonstrated using a CMOS inverter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 1978-1985.
    7. Xu, Yong & Wu, Juan & Du, Lin & Yang, Hui, 2016. "Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 91-100.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:402:y:1999:i:6759:d:10.1038_46279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.