IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v401y1999i6754d10.1038_44352.html
   My bibliography  Save this article

Lanthanum-substituted bismuth titanate for use in non-volatile memories

Author

Listed:
  • B. H. Park

    (Seoul National University)

  • B. S. Kang

    (Seoul National University)

  • S. D. Bu

    (Seoul National University)

  • T. W. Noh

    (Seoul National University)

  • J. Lee

    (Sung Kyun Kwan University)

  • W. Jo

    (LG Corporate Institute of Technology)

Abstract

Non-volatile memory devices are so named because they retain information when power is interrupted; thus they are important computer components. In this context, there has been considerable recent interest1,2 in developing non-volatile memories that use ferroelectric thin films—‘ferroelectric random access memories’, or FRAMs—in which information is stored in the polarization state of the ferroelectric material. To realize a practical FRAM, the thin films should satisfy the following criteria: compatibility with existing dynamic random access memory technologies, large remnant polarization (Pr) and reliable polarization-cycling characteristics. Early work focused on lead zirconate titanate (PZT) but, when films of this material were grown on metal electrodes, they generally suffered from a reduction of Pr (‘fatigue’) with polarity switching. Strontium bismuth tantalate (SBT) and related oxides have been proposed to overcome the fatigue problem3, but such materials have other shortcomings, such as a high deposition temperature. Here we show that lanthanum-substituted bismuth titanate thin films provide a promising alternative for FRAM applications. The films are fatigue-free on metal electrodes, they can be deposited at temperatures of ∼650 °C and their values of Pr are larger than those of the SBT films.

Suggested Citation

  • B. H. Park & B. S. Kang & S. D. Bu & T. W. Noh & J. Lee & W. Jo, 1999. "Lanthanum-substituted bismuth titanate for use in non-volatile memories," Nature, Nature, vol. 401(6754), pages 682-684, October.
  • Handle: RePEc:nat:nature:v:401:y:1999:i:6754:d:10.1038_44352
    DOI: 10.1038/44352
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/44352
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/44352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziwen Zhou & Shun Wang & Zhou Zhou & Yiqi Hu & Qiankun Li & Jinshuo Xue & Zhijian Feng & Qingyu Yan & Zhongshen Luo & Yuyan Weng & Rujun Tang & Xiaodong Su & Fengang Zheng & Kazuki Okamoto & Hiroshi F, 2023. "Unconventional polarization fatigue in van der Waals layered ferroelectric ionic conductor CuInP2S6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xiaolei Wang & Zixuan Shang & Chen Zhang & Jiaqian Kang & Tao Liu & Xueyun Wang & Siliang Chen & Haoliang Liu & Wei Tang & Yu-Jia Zeng & Jianfeng Guo & Zhihai Cheng & Lei Liu & Dong Pan & Shucheng Ton, 2023. "Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:401:y:1999:i:6754:d:10.1038_44352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.