IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v399y1999i6737d10.1038_21371.html
   My bibliography  Save this article

Topography of contextual modulations mediated by short-range interactions in primary visual cortex

Author

Listed:
  • Aniruddha Das

    (The Rockefeller University)

  • Charles D. Gilbert

    (The Rockefeller University)

Abstract

Neurons in primary visual cortex (V1) respond differently to a simple visual element presented in isolation from when it is embedded withina complex image. This difference, a specific modulation by surrounding elements in the image, is mediated by short- and long-range connections within V1 and by feedback from other areas. Here we study the role of short-range connections in this process, and relate it to the layout of local inhomogeneities in the cortical maps of orientation and space. By measuring correlation between neuron pairs located in optically imaged maps of V1 orientation columns we show that the strength of local connections between cells is a graded function of lateral separation across cortex, largely radially symmetrical and relatively independent of orientation preferences. We then show the contextual influence of flanking visual elements on neuronal responses varies systematically with a neuron's position within the cortical orientation map. The strength of this contextual influence on a neuron can be predicted from a model of local connections based on simple overlap with particular features of the orientation map. This indicates that local intracortical circuitry could endow neurons with a graded specialization for processing angular visual features such as corners and T junctions, and this specialization could have its own functional cortical map, linked with the orientation map.

Suggested Citation

  • Aniruddha Das & Charles D. Gilbert, 1999. "Topography of contextual modulations mediated by short-range interactions in primary visual cortex," Nature, Nature, vol. 399(6737), pages 655-661, June.
  • Handle: RePEc:nat:nature:v:399:y:1999:i:6737:d:10.1038_21371
    DOI: 10.1038/21371
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/21371
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/21371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan J Hunt & Peter Dayan & Geoffrey J Goodhill, 2013. "Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    2. Malte Persike & Günter Meinhardt, 2015. "Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
    3. Zhong Li & Chen Wu & Qi Han & Mingyang Hou & Guorong Chen & Tengfei Weng, 2022. "CASI-Net: A Novel and Effect Steel Surface Defect Classification Method Based on Coordinate Attention and Self-Interaction Mechanism," Mathematics, MDPI, vol. 10(6), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:399:y:1999:i:6737:d:10.1038_21371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.