IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v399y1999i6734d10.1038_20619.html
   My bibliography  Save this article

Zero-point entropy in ‘spin ice’

Author

Listed:
  • A. P. Ramirez

    (Bell Laboratories, Lucent Technologies)

  • A. Hayashi

    (Princeton University)

  • R. J. Cava

    (Princeton University)

  • R. Siddharthan

    (Indian Institute of Science)

  • B. S. Shastry

    (Indian Institute of Science)

Abstract

Common water ice (ice Ih) is an unusual solid—the oxygen atoms form a periodic structure but the hydrogen atoms are highly disordered due to there being two inequivalent O–H bond lengths1. Pauling showed that the presence of these two bond lengths leads to a macroscopic degeneracy of possible ground states2,3, such that the system has finite entropy as the temperature tends towards zero. The dynamics associated with this degeneracy are experimentally inaccessible, however, as ice melts and the hydrogen dynamics cannot be studied independently of oxygen motion4. An analogous system5 in which this degeneracy can be studied is a magnet with the pyrochlore structure—termed ‘spin ice’—where spin orientation plays a similar role to that of the hydrogen position in ice Ih. Here we present specific-heat data forone such system, Dy2Ti2O7, from which we infer a total spinentropy of 0.67R ln2. This is similar to the value, 0.71R ln2, determined for ice Ih, so confirming the validity of the correspondence. We also find, through application of a magnetic field, behaviour not accessible in water ice—restoration of much of the ground-state entropy and new transitions involving transverse spin degrees of freedom.

Suggested Citation

  • A. P. Ramirez & A. Hayashi & R. J. Cava & R. Siddharthan & B. S. Shastry, 1999. "Zero-point entropy in ‘spin ice’," Nature, Nature, vol. 399(6734), pages 333-335, May.
  • Handle: RePEc:nat:nature:v:399:y:1999:i:6734:d:10.1038_20619
    DOI: 10.1038/20619
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/20619
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/20619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Zhang & Chengkun Xing & Kyle Noordhoek & Zhaoyu Liu & Tianhao Zhao & Lukas Horák & Qing Huang & Lin Hao & Junyi Yang & Shashi Pandey & Elbio Dagotto & Zhigang Jiang & Jiun-Haw Chu & Yan Xin & Eun , 2023. "Anomalous magnetoresistance by breaking ice rule in Bi2Ir2O7/Dy2Ti2O7 heterostructure," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:399:y:1999:i:6734:d:10.1038_20619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.