IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v398y1999i6725d10.1038_18648.html
   My bibliography  Save this article

Oceanic forcing of the wintertime North Atlantic Oscillation and European climate

Author

Listed:
  • M. J. Rodwell

    (Hadley Centre for Climate Prediction and Research, UK Meteorological Office)

  • D. P. Rowell

    (Hadley Centre for Climate Prediction and Research, UK Meteorological Office)

  • C. K. Folland

    (Hadley Centre for Climate Prediction and Research, UK Meteorological Office)

Abstract

The weather over the North Atlantic Ocean, particularly in winter, is often characterized by strong eastward air-flow between the ‘Icelandic low’ and the ‘Azores high’, and by a ‘stormtrack’ of weather systems which move towards western Europe. The North Atlantic Oscillation — an index of which can be defined as the difference in atmospheric pressure at sea level between the Azores and Iceland — is an important mode of variability in the global atmosphere1,2 and is intimately related to the position and strength of the North Atlantic stormtrack owing to dynamic processes internal to the atmosphere3,4. Here we use a general circulation model of the atmosphere to investigate the ocean's role in forcing North Atlantic and European climate. Our simulations indicate that much of the multiannual to multidecadal variability of the winter North Atlantic Oscillation over the past half century may be reconstructed from a knowledge of North Atlantic sea surface temperature. We argue that sea surface temperature characteristics are ‘communicated’ to the atmosphere through evaporation, precipitation and atmospheric-heating processes, leading to changes in temperature, precipitation and storminess over Europe. As it has recently been proposed that there may be significant multiannual predictability of North Atlantic sea surface temperature patterns5, our results are encouraging for the prediction of European winter climate up to several years in advance.

Suggested Citation

  • M. J. Rodwell & D. P. Rowell & C. K. Folland, 1999. "Oceanic forcing of the wintertime North Atlantic Oscillation and European climate," Nature, Nature, vol. 398(6725), pages 320-323, March.
  • Handle: RePEc:nat:nature:v:398:y:1999:i:6725:d:10.1038_18648
    DOI: 10.1038/18648
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/18648
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/18648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Murphy & Richard Washington & Thomas Downing & Randall Martin & Gina Ziervogel & Anthony Preston & Martin Todd & Ruth Butterfield & Jim Briden, 2001. "Seasonal Forecasting for Climate Hazards: Prospects and Responses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 171-196, March.
    2. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. M. Lorenzo & J. Taboada & I. Iglesias & M. Gómez-Gesteira, 2011. "Predictability of the spring rainfall in Northwestern Iberian Peninsula from sea surfaces temperature of ENSO areas," Climatic Change, Springer, vol. 107(3), pages 329-341, August.
    4. Jean-Louis Pinault, 2012. "Global warming and rainfall oscillation in the 5–10 yr band in Western Europe and Eastern North America," Climatic Change, Springer, vol. 114(3), pages 621-650, October.
    5. Ramos, V. & López, M. & Taveira-Pinto, F. & Rosa-Santos, P., 2017. "Influence of the wave climate seasonality on the performance of a wave energy converter: A case study," Energy, Elsevier, vol. 135(C), pages 303-316.
    6. Alonzo, Bastien & Tankov, Peter & Drobinski, Philippe & Plougonven, Riwal, 2020. "Probabilistic wind forecasting up to three months ahead using ensemble predictions for geopotential height," International Journal of Forecasting, Elsevier, vol. 36(2), pages 515-530.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:398:y:1999:i:6725:d:10.1038_18648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.