IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6717d10.1038_16898.html
   My bibliography  Save this article

A controlled-release microchip

Author

Listed:
  • John T. Santini

    (Massachusetts Institute of Technology)

  • Michael J. Cima

    (Massachusetts Institute of Technology)

  • Robert Langer

    (Massachusetts Institute of Technology)

Abstract

Much previous work in methods of achieving complex drug-release patterns has focused on pulsatile release from polymeric materials in response to specific stimuli1, such as electric2,3,4,5 or magnetic6,7 fields, exposure to ultrasound7,8, light9 or enzymes10, and changes in pH11 or temperature12,13,14. An alternative method for achieving pulsatile release involves using microfabrication technology to develop active devices that incorporate micrometre-scale pumps, valves and flow channels to deliver liquid solutions15,16. Here we report a solid-state silicon microchip that can provide controlled release of single or multiple chemical substances on demand. The release mechanism is based on the electrochemical dissolution of thin anode membranes covering microreservoirs filled with chemicals in solid, liquid or gel form. We have conducted proof-of-principle release studies with a prototype microchip using gold and saline solution as a model electrode material and release medium, and we have demonstrated controlled, pulsatile release of chemical substances with this device.

Suggested Citation

  • John T. Santini & Michael J. Cima & Robert Langer, 1999. "A controlled-release microchip," Nature, Nature, vol. 397(6717), pages 335-338, January.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6717:d:10.1038_16898
    DOI: 10.1038/16898
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/16898
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/16898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yihang Wang & Zeka Chen & Brayden Davis & Will Lipman & Sicheng Xing & Lin Zhang & Tian Wang & Priyash Hafiz & Wanrong Xie & Zijie Yan & Zhili Huang & Juan Song & Wubin Bai, 2024. "Digital automation of transdermal drug delivery with high spatiotemporal resolution," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6717:d:10.1038_16898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.