IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v394y1998i6695d10.1038_29457.html
   My bibliography  Save this article

Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system

Author

Listed:
  • Alka Agrawal

    (Department of Pharmacology)

  • Quinn M. Eastman

    (Department of Molecular Biophysics and Biochemistry)

  • David G. Schatz

    (Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine)

Abstract

Immunoglobulin and T-cell-receptor genes are assembled from component gene segments in developing lymphocytes by a site-specific recombination reaction, V (D)J recombination. The proteins encoded by the recombination-activating genes, RAG1 and RAG2, are essential in this reaction, mediating sequence-specific DNA recognition of well-defined recombination signals and DNA cleavage next to these signals. Here we show that RAG1 and RAG2 together form a transposase capable of excising a piece of DNA containing recombination signals from a donor site and inserting it into a target DNA molecule. The products formed contain a short duplication of target DNA immediately flanking the transposed fragment, a structure like that created by retroviral integration and all known transposition reactions. The results support the theory that RAG1 and RAG2 were once components of a transposable element, and that the split nature of immunoglobulin and T-cell-receptor genes derives from germline insertion of this element into an ancestral receptor gene soon after the evolutionary divergence of jawed and jawless vertebrates.

Suggested Citation

  • Alka Agrawal & Quinn M. Eastman & David G. Schatz, 1998. "Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system," Nature, Nature, vol. 394(6695), pages 744-751, August.
  • Handle: RePEc:nat:nature:v:394:y:1998:i:6695:d:10.1038_29457
    DOI: 10.1038/29457
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/29457
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/29457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingyi Huang & Xiang Liu & Shuo Li & Chen Li & Hong-Yan Wang & Qun Liu & Jian-Yang Chen & Yingying Zhang & Yanan Li & Xianghui Zhang & Qian Wang & Kaiqiang Liu & Yu-Yan Liu & Yue Pang & Shanshan Liu &, 2024. "Discovery of an unconventional lamprey lymphocyte lineage highlights divergent features in vertebrate adaptive immune system evolution," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:394:y:1998:i:6695:d:10.1038_29457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.