IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v394y1998i6694d10.1038_29299.html
   My bibliography  Save this article

Cortical area MT and the perception of stereoscopic depth

Author

Listed:
  • Gregory C. DeAngelis

    (Stanford University School of Medicine)

  • Bruce G. Cumming

    (University Laboratory of Physiology)

  • William T. Newsome

    (Stanford University School of Medicine)

Abstract

Stereopsis is the perception of depth based on small positional differences between images formed on the two retinae (known as binocular disparity). Neurons that respond selectively to binocular disparity were first described three decades ago1,2, and have since been observed in many visual areas of the primate brain, including V1, V2, V3, MT and MST3,4,5,6,7,8. Although disparity-selective neurons are thought to form the neural substrate for stereopsis, the mere existence of disparity-selective neurons does not guarantee that they contribute to stereoscopic depth perception. Some disparity-selective neurons may play other roles, such as guiding vergence eye movements9,10. Thus, the roles of different visual areas in stereopsis remain poorly defined. Here we show that visual area MT is important in stereoscopic vision: electrical stimulation of clusters of disparity-selective MT neurons can bias perceptual judgements of depth, and the bias is predictable from the disparity preference of neurons at the stimulation site. These results show that behaviourally relevant signals concerning stereoscopic depth are present in MT.

Suggested Citation

  • Gregory C. DeAngelis & Bruce G. Cumming & William T. Newsome, 1998. "Cortical area MT and the perception of stereoscopic depth," Nature, Nature, vol. 394(6694), pages 677-680, August.
  • Handle: RePEc:nat:nature:v:394:y:1998:i:6694:d:10.1038_29299
    DOI: 10.1038/29299
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/29299
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/29299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew M. Clark & David C. Bradley, 2022. "A neural correlate of perceptual segmentation in macaque middle temporal cortical area," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Evi Hendrikx & Jacob M. Paul & Martijn Ackooij & Nathan Stoep & Ben M. Harvey, 2022. "Visual timing-tuned responses in human association cortices and response dynamics in early visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Feiyan Tian & Ying Zhang & Kenneth E. Schriver & Jia Ming Hu & Anna Wang Roe, 2024. "A novel interface for cortical columnar neuromodulation with multipoint infrared neural stimulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Tian Wang & Weifeng Dai & Yujie Wu & Yang Li & Yi Yang & Yange Zhang & Tingting Zhou & Xiaowen Sun & Gang Wang & Liang Li & Fei Dou & Dajun Xing, 2024. "Nonuniform and pathway-specific laminar processing of spatial frequencies in the primary visual cortex of primates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:394:y:1998:i:6694:d:10.1038_29299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.