IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v394y1998i6692d10.1038_28848.html
   My bibliography  Save this article

Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo

Author

Listed:
  • Edward A. Stern

    (University of Tennessee College of Medicine)

  • Dieter Jaeger

    (Emory University)

  • Charles J. Wilson

    (University of Tennessee College of Medicine)

Abstract

The basal ganglia are an interconnected set of subcortical regions whose established role in cognition and motor control remains poorly understood. An important nucleus within the basal ganglia, the striatum, receives cortical afferents that convey sensorimotor, limbic and cognitive information1. The activity of medium-sized spiny neurons in the striatum seems to depend on convergent input within these information channels2. To determine the degree of correlated input, both below and at threshold for the generation of action potentials, we recorded intracellularly from pairs of spiny neurons in vivo. Here we report that the transitions between depolarized and hyperpolarized states were highly correlated among neurons. Within individual depolarized states, some significant synchronous fluctuations in membrane potential occurred, but action potentials were not synchronized. Therefore, although the mean afferent signal across fibres is highly correlated among striatal neurons, the moment-to-moment variations around the mean, which determine the timing of action potentials, are not. We propose that the precisely timed, synchronous component of the membrane potential signals activation of cell assemblies and enables firing to occur. The asynchronous component, with low redundancy, determines the fine temporal pattern of spikes.

Suggested Citation

  • Edward A. Stern & Dieter Jaeger & Charles J. Wilson, 1998. "Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo," Nature, Nature, vol. 394(6692), pages 475-478, July.
  • Handle: RePEc:nat:nature:v:394:y:1998:i:6692:d:10.1038_28848
    DOI: 10.1038/28848
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/28848
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/28848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudiksha Sridhar & Eric Lowet & Howard J. Gritton & Jennifer Freire & Chengqian Zhou & Florence Liang & Xue Han, 2024. "Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. John N. J. Reynolds & Riccardo Avvisati & Paul D. Dodson & Simon D. Fisher & Manfred J. Oswald & Jeffery R. Wickens & Yan-Feng Zhang, 2022. "Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Maxim Volgushev & Vladimir Ilin & Ian H Stevenson, 2015. "Identifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro Experiments," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-31, March.
    5. Seyed-Ali Sadegh-Zadeh & Chandrasekhar Kambhampati & Darryl N. Davis, 2019. "Ionic Imbalances and Coupling in Synchronization of Responses in Neurons," J, MDPI, vol. 2(1), pages 1-24, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:394:y:1998:i:6692:d:10.1038_28848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.