IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6687d10.1038_31729.html
   My bibliography  Save this article

Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase

Author

Listed:
  • Silvia Arber

    (Friedrich Miescher Institute
    Columbia University)

  • Freda A. Barbayannis

    (Walter and Eliza Hall Institute of Medical Research)

  • Hartwig Hanser

    (Friedrich Miescher Institute)

  • Corinna Schneider

    (Friedrich Miescher Institute)

  • Clement A. Stanyon

    (Walter and Eliza Hall Institute of Medical Research)

  • Ora Bernard

    (Walter and Eliza Hall Institute of Medical Research)

  • Pico Caroni

    (Friedrich Miescher Institute)

Abstract

Cell division, cell motility and the formation and maintenance of specialized structures in differentiated cells depend directly on the regulated dynamics of the actin cytoskeleton1,2. To understand the mechanisms of these basic cellular processes, the signalling pathways that link external signals to the regulation of the actin cytoskeleton need to be characterized2,3. Here we identify a pathway for the regulation of cofilin, a ubiquitous actin-binding protein that is essential for effective depolymerization of actin filaments4,5,6,7,8. LIM-kinase 1, also known as KIZ, is a protein kinase with two amino-terminal LIM motifs9,10,11 that induces stabilization of F-actin structures in transfected cells. Dominant-negative LIM-kinase1 inhibits the accumulation of the F-actin. Phosphorylation experiments in vivo and in vitro provide evidence that cofilin is a physiological substrate of LIM-kinase 1. Phosphorylation by LIM-kinase 1 inactivates cofilin, leading to accumulation of actin filaments. Constitutively active Rac augmented cofilin phosphorylation and LIM-kinase 1 autophosphorylation whereas phorbol ester inhibited these processes. Our results define a mechanism for the regulation of cofilin and hence of actin dynamics in vivo. By modulating the stability of actin cytoskeletal structures, this pathway should play a central role in regulating cell motility and morphogenesis.

Suggested Citation

  • Silvia Arber & Freda A. Barbayannis & Hartwig Hanser & Corinna Schneider & Clement A. Stanyon & Ora Bernard & Pico Caroni, 1998. "Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase," Nature, Nature, vol. 393(6687), pages 805-809, June.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6687:d:10.1038_31729
    DOI: 10.1038/31729
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/31729
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/31729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tamara Advedissian & Stéphane Frémont & Arnaud Echard, 2024. "Cytokinetic abscission requires actin-dependent microtubule severing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Caroline Dour & Maria Chatzifrangkeskou & Coline Macquart & Maria M. Magiera & Cécile Peccate & Charlène Jouve & Laura Virtanen & Tiina Heliö & Katriina Aalto-Setälä & Silvia Crasto & Bruno Cadot & Dé, 2022. "Actin-microtubule cytoskeletal interplay mediated by MRTF-A/SRF signaling promotes dilated cardiomyopathy caused by LMNA mutations," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Gabriela Casanova-Sepúlveda & Joel A. Sexton & Benjamin E. Turk & Titus J. Boggon, 2023. "Autoregulation of the LIM kinases by their PDZ domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Jiacheng Wu & Xiaoqing Xu & Jiaqi Duan & Yangyang Chai & Jiaying Song & Dongsheng Gong & Bingjing Wang & Ye Hu & Taotao Han & Yuanyuan Ding & Yin Liu & Jingnan Li & Xuetao Cao, 2024. "EFHD2 suppresses intestinal inflammation by blocking intestinal epithelial cell TNFR1 internalization and cell death," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Vincent On & Atena Zahedi & Iryna M Ethell & Bir Bhanu, 2017. "Automated spatio-temporal analysis of dendritic spines and related protein dynamics," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6687:d:10.1038_31729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.