IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6687d10.1038_31693.html
   My bibliography  Save this article

Smad2 role in mesoderm formation, left–right patterning and craniofacial development

Author

Listed:
  • Masatoshi Nomura

    (Cardiovascular Research Center, Massachusetts General Hospital East, Harvard Medical School)

  • En Li

    (Cardiovascular Research Center, Massachusetts General Hospital East, Harvard Medical School)

Abstract

Signalling by the transforming growth factor-β (TGF-β) superfamily of proteins depends on the phosphorylation and activation of SMAD proteins by heteromeric complexes of ligand-specific type I and type II receptors with serine/threonine-kinase activity1. The vertebrate SMAD family includes at least nine members, of which Smad2 has been shown to mediate signalling by activin and TGF-β2,3,4,5. In Xenopus, Smad2 can induce dorsal mesoderm, mimicking Vg-1, activin and nodal2,4. Here we investigate the function of Smad2 in mammalian development by generating two independent Smad2 mutant alleles in mice by gene targeting. We show that homozygous mutant embryos fail to form an organized egg cylinder and lack mesoderm, like mutant mice lacking nodal6,7 or ActRIB, the gene encoding the activin type-I receptor8. About 20 per cent of Smad2 heterozygous embryos have severe gastrulation defects and lack mandibles or eyes, indicating that the gene dosage of Smad2 is critical for signalling. Mice trans-heterozygous for both Smad2 and nodal mutations display a range of phenotypes, including gastrulation defects, complex craniofacial abnormalities such as cyclopia, and defects in left–right patterning, indicating that Smad2 may mediate nodal signalling in these developmental processes. Our results show that Smad2 function is essential for early development and for several patterning processes in mice.

Suggested Citation

  • Masatoshi Nomura & En Li, 1998. "Smad2 role in mesoderm formation, left–right patterning and craniofacial development," Nature, Nature, vol. 393(6687), pages 786-790, June.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6687:d:10.1038_31693
    DOI: 10.1038/31693
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/31693
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/31693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexis Osseni & Aymeric Ravel-Chapuis & Edwige Belotti & Isabella Scionti & Yann-Gaël Gangloff & Vincent Moncollin & Laetitia Mazelin & Remi Mounier & Pascal Leblanc & Bernard J. Jasmin & Laurent Scha, 2022. "Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6687:d:10.1038_31693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.