IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v393y1998i6686d10.1038_31514.html
   My bibliography  Save this article

The antigenic structure of the HIV gp120 envelope glycoprotein

Author

Listed:
  • Richard Wyatt

    (Dana-Farber Cancer Institute, Harvard Medical School)

  • Peter D. Kwong

    (Howard Hughes Medical Institute, Columbia University)

  • Elizabeth Desjardins

    (Dana-Farber Cancer Institute, Harvard Medical School)

  • Raymond W. Sweet

    (SmithKline Beecham Pharmaceuticals)

  • James Robinson

    (Tulane University Medical Center)

  • Wayne A. Hendrickson

    (Howard Hughes Medical Institute, Columbia University)

  • Joseph G. Sodroski

    (Dana-Farber Cancer Institute, Harvard Medical School
    Harvard School of Public Health)

Abstract

The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells1. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family2,3,4. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding5,6. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex7 and typically recognize conserved or variable epitopes near the receptor-binding regions8,9,10,11. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody12. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.

Suggested Citation

  • Richard Wyatt & Peter D. Kwong & Elizabeth Desjardins & Raymond W. Sweet & James Robinson & Wayne A. Hendrickson & Joseph G. Sodroski, 1998. "The antigenic structure of the HIV gp120 envelope glycoprotein," Nature, Nature, vol. 393(6686), pages 705-711, June.
  • Handle: RePEc:nat:nature:v:393:y:1998:i:6686:d:10.1038_31514
    DOI: 10.1038/31514
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/31514
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/31514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongxiao Han & Liuquan Sun & Yanqing Sun & Li Qi, 2017. "Mark-specific additive hazards regression with continuous marks," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 467-494, July.
    2. Durgadevi Parthasarathy & Karunakar Reddy Pothula & Sneha Ratnapriya & Héctor Cervera Benet & Ruth Parsons & Xiao Huang & Salam Sammour & Katarzyna Janowska & Miranda Harris & Joseph Sodroski & Priyam, 2024. "Conformational flexibility of HIV-1 envelope glycoproteins modulates transmitted/founder sensitivity to broadly neutralizing antibodies," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Swetha Garimalla & Thomas Kieber-Emmons & Anastas D Pashov, 2015. "The Patterns of Coevolution in Clade B HIV Envelope's N-Glycosylation Sites," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
    4. Shixia Wang & Kun-Wei Chan & Danlan Wei & Xiuwen Ma & Shuying Liu & Guangnan Hu & Saeyoung Park & Ruimin Pan & Ying Gu & Alexandra F. Nazzari & Adam S. Olia & Kai Xu & Bob C. Lin & Mark K. Louder & Kr, 2024. "Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:393:y:1998:i:6686:d:10.1038_31514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.