IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v391y1998i6664d10.1038_34635.html
   My bibliography  Save this article

Three-dimensional glacial flow and surface elevation measured with radar interferometry

Author

Listed:
  • Johan J. Mohr

    (Danish Center for Remote Sensing, Technical University of Denmark)

  • Niels Reeh

    (Danish Center for Remote Sensing, Technical University of Denmark)

  • Søren N. Madsen

    (Danish Center for Remote Sensing, Technical University of Denmark)

Abstract

Outlet glaciers—which serve to drain ice from ice sheets—seem to be dynamically less stable in North Greenland than in South Greenland1,2,3. Storstrømmen, a large outlet glacier in northeastern Greenland which surged between 1978 and 1984 (ref. 2), has been well studied. In general, neither glacier surge mechanisms nor the geographical distribution of the surges are well known. Conventional satellite radar interferometry can provide large-scale topography models with high resolution4, and can measure the radar line-of-sight component of ice-flow vectors5, but cannot map full vector flow fields. Here we present an interferometry method that combines observations from descending and ascending satellite orbits which, assuming ice flow parallel to the topographic surface, allows us to use the differing view angles to estimate full three-dimensional surface flow patterns. The accuracy of our technique is confirmed by the good agreement between our radar-based flow model and in situ Global Positioning System (GPS) reference data at Storstrømmen. Radar measurements such as these, made regularly and at high spatial density, have the potential to substantially enhance our understanding of glacier dynamics and ice-sheet flow, as well as improve the accuracy of glacier mass-balance estimates.

Suggested Citation

  • Johan J. Mohr & Niels Reeh & Søren N. Madsen, 1998. "Three-dimensional glacial flow and surface elevation measured with radar interferometry," Nature, Nature, vol. 391(6664), pages 273-276, January.
  • Handle: RePEc:nat:nature:v:391:y:1998:i:6664:d:10.1038_34635
    DOI: 10.1038/34635
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/34635
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/34635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Slater & Andrew Shepherd & Malcolm McMillan & Amber Leeson & Lin Gilbert & Alan Muir & Peter Kuipers Munneke & Brice Noël & Xavier Fettweis & Michiel Broeke & Kate Briggs, 2021. "Increased variability in Greenland Ice Sheet runoff from satellite observations," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:391:y:1998:i:6664:d:10.1038_34635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.