IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v387y1997i6635d10.1038_42924.html
   My bibliography  Save this article

Contrasting physiological and structural vegetation feedbacks in climate change simulations

Author

Listed:
  • Richard A. Betts
  • Peter M. Cox

    (*Hadley Centre, Meteorological Office)

  • Susan E. Lee

    (University of Sheffield)

  • F. Ian Woodward

    (University of Sheffield)

Abstract

Anthropogenic increases in the atmospheric concentration of carbon dioxide and other greenhouse gases are predicted to cause a warming of the global climate by modifying radiative forcing1. Carbon dioxide concentration increases may make a further contribution to warming by inducing a physiological response of the global vegetation—a reduced stomatal conductance, which suppresses transpiration2. Moreover, a CO2-enriched atmosphere and the corresponding change in climate may also alter the density of vegetation cover, thus modifying the physicalcharacteristics of the land surface to provide yet another climate feedback3,4,5,6. But such feedbacks from changes in vegetation structure have not yet been incorporated into general circulation model predictions of future climate change. Here we use a general circulation model iteratively coupled to an equilibrium vegetation model to quantify the effects of both physiological and structural vegetation feedbacks on a doubled-CO2 climate. On a global scale, changes in vegetation structure are found to partially offset physiological vegetation–climate feedbacks in the long term, but overall vegetation feedbacks provide significant regional-scale effects.

Suggested Citation

  • Richard A. Betts & Peter M. Cox & Susan E. Lee & F. Ian Woodward, 1997. "Contrasting physiological and structural vegetation feedbacks in climate change simulations," Nature, Nature, vol. 387(6635), pages 796-799, June.
  • Handle: RePEc:nat:nature:v:387:y:1997:i:6635:d:10.1038_42924
    DOI: 10.1038/42924
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/42924
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/42924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Xin & Jiao, Liang & Che, Xichen & Wu, Jingjing & Zhu, Xuli & Li, Qian, 2024. "Study on the water-carbon coupling coordination function on the eastern edge of the Qinghai-Tibet plateau," Ecological Modelling, Elsevier, vol. 487(C).
    2. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    3. Zhan Chen & Yihao Wang & Ruisi Chen & Xiuya Ni & Jixin Cao, 2022. "Effects of Forest Type on Nutrient Fluxes in Throughfall, Stemflow, and Litter Leachate within Acid-Polluted Locations in Southwest China," IJERPH, MDPI, vol. 19(5), pages 1-15, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:387:y:1997:i:6635:d:10.1038_42924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.